这道题 连续上升的三元组 且已经按照第一维排好序了。

直接上CDQ分治即可 当然也是可以2-Dtree解决这个 问题 但是感觉nlog^2 比nsqrt(n)要快一些。。

算是复习一发CDQ分治吧 也好久没写了。

原来最长三元上升序列 不是裸的CDQ分治。。我以为是 没细想 最后还是细想了一下实现方式。

首先CDQ左边 然后对于右边此时x是无序的 考虑排序 在外面排序没用好吧。。

好吧可能有用但是太过繁琐那种写法 这里推荐暴力sort。。归并没用 因为归并此时复杂度还是nlogn的。

统计完左边对右边的贡献后 再桶排序复原。再CDQ右边 回来的时候可以进行归并不需要再sort了节省常数。。

复杂度nlog^2。

const int MAXN=100010;
int n,top,ans;
struct wy
{
int x,y;
int id;
inline int friend operator <(wy a,wy b){return a.x==b.x?a.id<b.id:a.x<b.x;}
}t[MAXN],ql[MAXN];
int b[MAXN],f[MAXN],c[MAXN];
inline void discrete()
{
sort(b+1,b+1+n);
rep(1,n,i)if(i==1||b[i]!=b[i-1])b[++top]=b[i];
rep(1,n,i)y(i)=lower_bound(b+1,b+1+top,y(i))-b;
}
inline void add(int x,int y)
{
if(y==-1)
{
while(x<=top)
{
c[x]=0;
x+=x&(-x);
}
return;
}
while(x<=top)
{
c[x]=max(c[x],y);
x+=x&(-x);
}
}
inline int ask(int x)
{
int cnt=0;
while(x)
{
cnt=max(cnt,c[x]);
x-=x&(-x);
}
return cnt;
}
inline void CDQ(int l,int r)
{
if(l==r){++f[id(l)];return;}
int mid=(l+r)>>1;
CDQ(l,mid);
sort(t+mid+1,t+r+1);
int i=l,j=mid+1;
for(int k=l;k<=r+1;++k)
{
if(j>r)
{
for(int w=i-1;w>=l;--w)add(y(w),-1);
break;
}
if((i<=mid)&&x(i)<x(j))add(y(i),f[id(i)]),++i;
else f[id(j)]=max(f[id(j)],ask(y(j)-1)),++j;
}
for(int k=mid+1;k<=r;++k)ql[id(k)]=t[k];
for(int k=mid+1;k<=r;++k)t[k]=ql[k];
CDQ(mid+1,r);
i=l;j=mid+1;
for(int k=l;k<=r;++k)
{
if(i<=mid&&x(i)<x(j)||j>r)ql[k]=t[i],++i;
else ql[k]=t[j],++j;
}
for(int k=l;k<=r;++k)t[k]=ql[k];
}
int main()
{
freopen("1.in","r",stdin);
get(n);
rep(1,n,i)get(x(i)),b[i]=get(y(i)),id(i)=i;
discrete();
CDQ(1,n);
for(int i=1;i<=n;++i)ans=max(ans,f[i]);
printf("%d\n",ans);
return 0;
}

这个树状数组清空的时候注意不要暴力清空 再来一遍序列 清成0即可。

bzoj 2225 [Spoj 2371]Another Longest Increasing的更多相关文章

  1. BZOJ 2225 [Spoj 2371]Another Longest Increasing(CDQ分治)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2225 [题目大意] 给定N个数对(xi,yi),求最长上升子序列的长度. 上升序列定义 ...

  2. BZOJ 2225: [Spoj 2371]Another Longest Increasing (CDQ分治+dp)

    题面 Description 给定N个数对(xi, yi),求最长上升子序列的长度.上升序列定义为{(xi, yi)}满足对i<j有xi<xj且yi<yj. Input Output ...

  3. 【bzoj2225】[Spoj 2371]Another Longest Increasing CDQ分治+树状数组

    题目描述 给定N个数对(xi, yi),求最长上升子序列的长度.上升序列定义为{(xi, yi)}满足对i<j有xi<xj且yi<yj. 样例输入 8 1 3 3 2 1 1 4 5 ...

  4. BZOJ2225: [Spoj 2371]Another Longest Increasing CDQ分治,3维LIS

    Code: #include <cstdio> #include <algorithm> #include <cstring> #define maxn 20000 ...

  5. BZOJ_2225_[Spoj 2371]Another Longest Increasing_CDQ 分治+树状数组

    BZOJ_2225_[Spoj 2371]Another Longest Increasing_CDQ 分治+树状数组 Description        给定N个数对(xi, yi),求最长上升子 ...

  6. SPOJ LIS2 Another Longest Increasing Subsequence Problem 三维偏序最长链 CDQ分治

    Another Longest Increasing Subsequence Problem Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://a ...

  7. SPOJ - LIS2 Another Longest Increasing Subsequence Problem

    cdq分治,dp(i)表示以i为结尾的最长LIS,那么dp的递推是依赖于左边的. 因此在分治的时候需要利用左边的子问题来递推右边. (345ms? 区间树TLE /****************** ...

  8. SPOJ LIS2 - Another Longest Increasing Subsequence Problem(CDQ分治优化DP)

    题目链接  LIS2 经典的三维偏序问题. 考虑$cdq$分治. 不过这题的顺序应该是 $cdq(l, mid)$ $solve(l, r)$ $cdq(mid+1, r)$ 因为有个$DP$. #i ...

  9. SPOJ Another Longest Increasing Subsequence Problem 三维最长链

    SPOJ Another Longest Increasing Subsequence Problem 传送门:https://www.spoj.com/problems/LIS2/en/ 题意: 给 ...

随机推荐

  1. i++ & ++i不看字节码是真的难懂

    package club.interview.base; /** * ++i 先"++"后赋值 * i++ 先赋值后"++" * i++ 局部变量表的值会改变, ...

  2. 状压DP之Mixed Up Cows G

    题目 传送们 大意 约翰家有N头奶牛,第i头奶牛的编号是Si,每头奶牛的编号都是唯一的.这些奶牛最近 在闹脾气,为表达不满的情绪,她们在挤奶的时候一定要排成混乱的队伍.在一只混乱的队 伍中,相邻奶牛的 ...

  3. Django---进阶1

    目录 静态文件配置 request对象方法初识 pycharm链接数据库(MySQL) django链接数据库(MySQL) Django ORM 字段的增删改查 数据的增删改查 今日作业 静态文件配 ...

  4. python入门008

    目录 一.for循环 作用:for循环是因为在循环取值(即遍历值)时for循环比while循环的使用更为简洁 1.for循环语法: 2.应用案例: 注意:break 与 continue也可以用于fo ...

  5. asp.net mvc使用jwt简单例子

    Json web token (JWT), 是为了在网络应用环境间传递声明而执行的一种基于JSON的开放标准.该token被设计为紧凑且安全的,特别适用于分布式站点的单点登录(SSO)场景.JWT的声 ...

  6. [JAVA]枚举类型的应用

    本文介绍枚举类的概念和开发过程中枚举的用法. 枚举类使用enum关键字定义,enum默认继承自Enum类,由于java单继承的特点,enum类无法再继承其他父类 一.枚举类的特性 1.简单枚举类的定义 ...

  7. 开发者必备——API设计问题

    本文主要探讨RPC和RESTFul两种API风格的特点以及在开发中应该如何进行技术选型,同时截取了网上社区,文章一部分关于API设计的想法和观点供读者参考,取舍. 1,背景简述 API学名:应用程序接 ...

  8. 管理用户和组 、 tar备份与恢复 、 cron计划任务-云计算学习(4)

    配置用户和组账号 问题 本例要求创建下列用户.组以及组的成员关系: 新建用户 alex,其用户ID为3456,密码是flectrag 创建一个名为 adminuser 的组 创建一个名为 natash ...

  9. python3 读取chrome浏览器cookies

    原文链接:https://www.cnblogs.com/gayhub/p/pythongetcookiefromchrome.html 好几年前我在做一些自动化的脚本时,脑子里也闪过这样的想法:能不 ...

  10. drf源码剖析系列(系列目录)

    drf源码剖析系列(系列目录) 01 drf源码剖析之restful规范 02 drf源码剖析之快速了解drf 03 drf源码剖析之视图 04 drf源码剖析之版本 05 drf源码剖析之认证 06 ...