LINK:Eden 的新背包问题

就是一个多重背包 每次去掉一个物品 询问钱数为w所能买到的最大值。

可以对于每次Q暴力dp 利用单调队列优化多重背包 这样复杂度是Qnm的。

发现过不了n==10的点。

仔细观察n==10的点 可以发现我们暴力枚举 某个物品不选之后的最大值即可。设状态f[i][j]表示第i个物品不选此时钱数为j的最大值。

求出这个复杂度是n^2m的 然后可以O(1)回答询问。

考虑正解 可以发现 对于01背包或者多重背包 去掉一个物品询问最大价值 动态直接去掉是不现实的。

考虑分治 分治到某个点上表示其他的都加入背包了 就当前点没有加入背包的最大值。

然后 对于分治的两边 暴力合并。可以发现这个合并是m^2的。

进一步的 可以发现 分治的复杂度极高 不如直接求出前后缀的背包和 然后进行合并。

怎么把合并的复杂度降下来是问题 类似于卷积不过这个是取max.

考虑每次询问 只询问w 而不是询问整个m 所以直接合并的复杂度为O(m).

复杂度为Qm。3e8 但是跑的飞快。

const int MAXN=1010;
int n,Q,m;
int f[MAXN][MAXN],g[MAXN][MAXN];
int q[MAXN],l,r;
struct wy{int w,c,v;}t[MAXN];
int main()
{
freopen("1.in","r",stdin);
get(n);m=1000;
rep(1,n,i)
{
int get(x),get(y),get(z);
t[i]=(wy){x,z,y};
}
rep(1,n,i)//前i个物品
{
for(int res=0;res<w(i);++res)
{
int ww=(m-res)/w(i);
l=r=1;q[1]=0;
f[i][res]=f[i-1][res];
rep(1,ww,j)
{
while(l<=r&&j-q[l]>c(i))++l;
int s=j*w(i)+res;
f[i][s]=max(f[i-1][s],f[i-1][q[l]*w(i)+res]+(j-q[l])*v(i));
while(l<=r&&f[i-1][s]>=f[i-1][q[r]*w(i)+res]+(j-q[r])*v(i))--r;
q[++r]=j;
}
}
}
fep(n,1,i)
{
for(int res=0;res<w(i);++res)
{
int ww=(m-res)/w(i);
l=r=1;q[1]=0;g[i][res]=g[i+1][res];
rep(1,ww,j)
{
while(l<=r&&j-q[l]>c(i))++l;
int s=j*w(i)+res;
g[i][s]=max(g[i+1][s],g[i+1][q[l]*w(i)+res]+(j-q[l])*v(i));
while(l<=r&&g[i+1][s]>=g[i+1][q[r]*w(i)+res]+(j-q[r])*v(i))--r;
q[++r]=j;
}
}
}
get(Q);
rep(1,Q,i)
{
int x,w;
get(x)+1;get(w);
int ans=0;
rep(0,w,j)ans=max(ans,f[x-1][j]+g[x+1][w-j]);
put(ans);
}
return 0;
}

luogu P4095 [HEOI2013]Eden 的新背包问题 多重背包 背包的合并的更多相关文章

  1. LUOGU P4095 [HEOI2013]Eden 的新背包问题

    题目描述 " 寄 没 有 地 址 的 信 ,这 样 的 情 绪 有 种 距 离 ,你 放 着 谁 的 歌 曲 ,是 怎 样 的 心 情 . 能 不 能 说 给 我 听 ." 失忆的 ...

  2. Luogu P4095 [HEOI2013]Eden的新背包问题

    题目 求出从前往后的背包\(f_{i,j}\)和从后往前的背包\(F_{i,j}\). 那么对于询问\((d,e)\),答案就是\(\max\limits_{i=0}^e f_{d-1,i}+F_{d ...

  3. Luogu P4095 [HEOI2013]Eden 的新背包问题 思维/动规

    当时一直在想前缀和...多亏张队提醒... 从1到n背次包,保存每一个状态下的价值,就是不要把第一维压掉:再从n到1背一次,同样记住每种状态: 然后询问时相当于是max(前缀+后缀),当然前缀后缀中间 ...

  4. P4095 [HEOI2013]Eden 的新背包问题

    P4095 [HEOI2013]Eden 的新背包问题 题解 既然假定第 i 个物品不可以选,那么我们就设置两个数组 dpl[][] 正序选前i个物品,dpr[][] 倒序选前i个物品 ,价格不超过 ...

  5. 题解——洛谷P4095 [HEOI2013]Eden 的新背包问题(背包)

    思路很妙的背包 用了一些前缀和的思想 去掉了一个物品,我们可以从前i-1个和后i+1个推出答案 奇妙的思路 #include <cstdio> #include <algorithm ...

  6. BZOJ 3163: [Heoi2013]Eden的新背包问题( 背包dp )

    从左到右, 从右到左分别dp一次, 然后就可以回答询问了. ---------------------------------------------------------- #include< ...

  7. BZOJ3163&Codevs1886: [Heoi2013]Eden的新背包问题[分治优化dp]

    3163: [Heoi2013]Eden的新背包问题 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 428  Solved: 277[Submit][ ...

  8. 洛谷P4095||bzoj3163 [HEOI2013]Eden 的新背包问题

    https://www.luogu.org/problemnew/show/P4095 不太会.. 网上有神奇的做法: 第一种其实是暴力(复杂度3e8...)然而可以A.考虑多重背包,发现没有办法快速 ...

  9. bzoj 3163: [Heoi2013]Eden的新背包问题

    Description "寄没有地址的信,这样的情绪有种距离,你放着谁的歌曲,是怎样的心心静,能不能说给我听."失忆的Eden总想努力地回忆起过去,然而总是只能清晰地记得那种思念的 ...

随机推荐

  1. 内嵌iframe页面在IOS下会受内部元素影响自动撑开的问题

    IOS下的webview页面,内嵌iframe元素,将其样式指定为宽高100%: .iframe { width: %; height: %; } 在安卓下运行均无问题,但是在IOS下会出现异常. 具 ...

  2. zookeeper3.5.5 centos7 完全分布式 搭建随记

    zookeeper3.5.5 centos7 完全分布式 搭建随记 这里是当初在三个ECS节点上搭建hadoop+zookeeper+hbase+solr的主要步骤,文章内容未经过润色,请参考的同学搭 ...

  3. HDU-1051/POJ-1065 Wooden sticks 木棍子(动态规划 LIS 线型动归)

    嘤嘤嘤,实习半年多的小蒟蒻的第一篇博客(题解) 英文的: There is a pile of n wooden sticks. The length and weight of each stick ...

  4. 简单了解一下 Swagger

    一.Swagger 1.什么是 Swagger ? Swagger 是一个规范和完整的框架,用于生成.描述.调用以及可视化的 Restful 风格的 Web 服务. 简单的理解:是一款 REST AP ...

  5. 【转】Hbuilder配置Avalon、Vue指令提示

    转载自CSDN http://blog.csdn.net/jianggujin/article/details/71419828 我本人是一名Java后端开发,偶尔也会研究一下前端内容,因为Hbuil ...

  6. 机器学习实战基础(十五):sklearn中的数据预处理和特征工程(八)特征选择 之 Filter过滤法(二) 相关性过滤

    相关性过滤 方差挑选完毕之后,我们就要考虑下一个问题:相关性了. 我们希望选出与标签相关且有意义的特征,因为这样的特征能够为我们提供大量信息.如果特征与标签无关,那只会白白浪费我们的计算内存,可能还会 ...

  7. Kubernetes实战指南(三十一):零宕机无缝迁移Spring Cloud至k8s

    1. 项目迁移背景 1.1 为什么要在"太岁"上动土? 目前公司的测试环境.UAT环境.生产环境均已经使用k8s进行维护管理,大部分项目均已完成容器化,并且已经在线上平稳运行许久. ...

  8. 《串并行数据结构与算法(SML语言)实验》题解

    注意:本题解仅供参考学习,请勿直接抄袭代码,否则造成的后果和笔者无关. 第一题: 题意: 对n个数升序排序. 题解: 快排,不解释. 代码(省略了输入输出函数,下同): val n = getInt ...

  9. [译]使用DOT语言和GraphvizOnline来可视化你的ASP.NETCore3.0终结点01

    这是系列文章中的第一篇:使用GraphvizOnline可视化ASP.NETCore3.0终结点.. 第1部分-使用DOT语言来可视化你的ASP.NETCore3.0终结点(本文) 第2部分-向ASP ...

  10. Ubuntu14.04 安装VMware tools

    Ubuntu14.04 安装VMware tools 方法一: 1. 在VMware 11(个人的测试环境为vm 11版本)下安装Ubuntu镜像:ubuntu-14.04.1-desktop-amd ...