【小白学AI】线性回归与逻辑回归(似然参数估计)
文章转自【机器学习炼丹术】
线性回归解决的是回归问题,逻辑回归相当于是线性回归的基础上,来解决分类问题。
1 公式
线性回归(Linear Regression)是什么相比不用多说了。格式是这个样子的:
\(f_{w,b}(x)=\sum_i{w_ix_i}+b\)
而逻辑回归(Logistic Regression)的样子呢?
\(f_{w,b}(x)=\sigma(\sum_i{w_ix_i}+b)\)
要记住的第一句话:逻辑回归可以理解为在线性回归后加了一个sigmoid函数。将线性回归变成一个0~1输出的分类问题。
2 sigmoid
sigmoid函数就是:
\(\sigma(z)=\frac{1}{1+e^{-z}}\)
函数图像是:
线性回归得到大于0的输出,逻辑回归就会得到0.5~1的输出;
线性回归得到小于0的输出,逻辑回归就会得到0~0.5的输出;
这篇文章的重点,在于线性回归的参数估计使用的最小二乘法,而而逻辑回归使用的是似然估计的方法。(当然,两者都可以使用梯度下降的方法)。
3 似然估计逻辑回归参数
举个例子,现在我们有了一个训练数据集,是一个二分类问题:
上面的\(x^1\)是样本,下面的\(C_1\)是类别,总共有两个类别。
现在假设我们有一个逻辑回归的模型:
\(f_{w,b}(x)=\sigma(\sum_i{w_ix_i}+b)\)
那么\(f_{w,b}(x^1)\)的结果,就是一个0~1的数,我们可以设定好,假设这个数字就是是类别\(C_1\)的概率,反之,1减去这个数字,就是类别\(C_2\)的概率。
似然简单的理解,就是让我们上面的数据集出现的概率最大
我们来理解一下:
- \(x_1\)是\(C_1\)的概率是\(f_{w,b}(x^1)\);
- \(x_2\)是\(C_1\)的概率是\(f_{w,b}(x^2)\);
- \(x_3\)是\(C_2\)的概率是\(1-f_{w,b}(x^3)\);
- ……
- \(x_N\)是\(C_1\)的概率是\(f_{w,b}(x^N)\);
样本之间彼此独立,那么上面那个数据集的概率是什么?是每一个样本的乘积,这个就是似然Likelihood:
我们希望这个w,b的参数估计值,就是能获得最大化似然的那个参数。也就是:
加上负号之后,就可以变成最小化的问题。当然,加上一个log并不会影响整个的w,b的估计值。因为\(L(w,b)\)最大的时候,\(log(L(w,b))\)也是最大的,log是个单调递增的函数。所以可以得到下面的:
【注意:所有的log其实是以e为底数的自然对数】
log又可以把之前的乘积和,转换成加法。
\(log(L(w,b))=log(f(x^1))+log(f(x^2))+log(1-f(x^3))...\)
然后,为了更加简化这个算是,我们将\(C_1, C_2\)数值化,变成1和0,然后每一个样本的真实标签用\(y\)来表示,所以就可以得到:
\(log(L(w,b))=\sum_i^N{ylog(f(x^i))+(1-y)log(1-f(x^i))}\)
【有点像是二值交叉熵,然而其实就是二值交叉熵。。】
- 当y=1,也就是类别是\(C_1\)的时候,这个是\(log(f(x^i))\)
- 当y=0,也就是类别是\(C_2\)的时候,这个是\(1-log(f(x^i))\)
所以其实我们得到的损失函数是:
\(loss=-log(L(w,b))=-\sum_i^N{ylog(f(x^i))+(1-y)log(1-f(x^i))}\)
之前说了,要找到让这个loss最小的时候的w和b,那怎么找?
【无情万能的梯度下降】
所以计算\(\frac{\partial loss}{\partial w}\),然后乘上学习率就好了。这里就不继续推导了,有耐心的可以慢慢推导,反正肯定能推出来的。
这里放个结果把:
\(\frac{-\partial lnL(w,b)}{\partial w_i}=\sum_n^N{-(y^n-f_{w,b}(x^n))x_i^n}\)
- 其中\(w_i\)为第i个要估计的参数,第i个特征;
- \(x^n_i\)是第n个样本的第i个特征的值;
- \(y^n\)是第n个样本的真实类别,0或者1。
【小白学AI】线性回归与逻辑回归(似然参数估计)的更多相关文章
- 【Coursera】线性回归和逻辑回归
一.线性回归 1.批量梯度下降法 每次对参数进行一次迭代时,都要扫描一遍输入全集 算法可以收敛到局部最优值 当迭代多次之后,每次迭代参数的改变越小 2.随机梯度下降法 对于一个输入样本,对参数进行一次 ...
- Matlab实现线性回归和逻辑回归: Linear Regression & Logistic Regression
原文:http://blog.csdn.net/abcjennifer/article/details/7732417 本文为Maching Learning 栏目补充内容,为上几章中所提到单参数线性 ...
- 【数据分析】线性回归与逻辑回归(R语言实现)
文章来源:公众号-智能化IT系统. 回归模型有多种,一般在数据分析中用的比较常用的有线性回归和逻辑回归.其描述的是一组因变量和自变量之间的关系,通过特定的方程来模拟.这么做的目的也是为了预测,但有时也 ...
- Spark MLlib回归算法------线性回归、逻辑回归、SVM和ALS
Spark MLlib回归算法------线性回归.逻辑回归.SVM和ALS 1.线性回归: (1)模型的建立: 回归正则化方法(Lasso,Ridge和ElasticNet)在高维和数据集变量之间多 ...
- 线性回归、逻辑回归(LR)
线性回归 回归是一种极易理解的模型,就相当于y=f(x),表明自变量 x 和因变量 y 的关系.最常见问题有如 医生治病时的望.闻.问.切之后判定病人是否生了什么病,其中的望闻问切就是获得自变量x,即 ...
- Machine Learning 学习笔记 (1) —— 线性回归与逻辑回归
本系列文章允许转载,转载请保留全文! [请先阅读][说明&总目录]http://www.cnblogs.com/tbcaaa8/p/4415055.html 1. 梯度下降法 (Gradien ...
- Coursera DeepLearning.ai Logistic Regression逻辑回归总结
既<Machine Learning>课程后,Andrew Ng又推出了新一系列的课程<DeepLearning.ai>,注册了一下可以试听7天.之后每个月要$49,想想还是有 ...
- 机器学习_线性回归和逻辑回归_案例实战:Python实现逻辑回归与梯度下降策略_项目实战:使用逻辑回归判断信用卡欺诈检测
线性回归: 注:为偏置项,这一项的x的值假设为[1,1,1,1,1....] 注:为使似然函数越大,则需要最小二乘法函数越小越好 线性回归中为什么选用平方和作为误差函数?假设模型结果与测量值 误差满足 ...
- 机器学习(三)—线性回归、逻辑回归、Softmax回归 的区别
1.什么是回归? 是一种监督学习方式,用于预测输入变量和输出变量之间的关系,等价于函数拟合,选择一条函数曲线使其更好的拟合已知数据且更好的预测未知数据. 2.线性回归 于一个一般的线性模型而言,其 ...
随机推荐
- Django---进阶12
目录 Auth模块 方法总结 如何扩展auth_user表 项目开发流程 表设计 作业 Auth模块 """ 其实我们在创建好一个django项目之后直接执行数据库迁移命 ...
- 在Linux上部署jmeter
一.服务器安装jmeter 1.将安装文件上传到Linux服务器 通过xshell文件上传工具,将文件 “apache-jmeter-5.1.1.tgz”上传 2.在服务器解压缩“apache-jme ...
- (转自MDN)CSS基础一定要看的包含块(containing block)
之前在写<个人常用的水平居中方法>这篇文章的时候,百分比问题涉及到了包含块(containing block)这个概念. 今天刷面试题的时候,又看到了containing block这个词 ...
- msyql事务的四种隔离级别
一.事务的基本要素(ACID) 1.原子性(Atomicity):事务开始后所有操作,要么全部做完,要么全部不做,不可能停滞在中间环节.事务执行过程中出错,会回滚到事务开始前的状态,所有的操作就像没有 ...
- EM算法理论与推导
EM算法(Expectation-maximization),又称最大期望算法,是一种迭代算法,用于含有隐变量的概率模型参数的极大似然估计(或极大后验概率估计) 从定义可知,该算法是用来估计参数的,这 ...
- Tomcat的基本使用及相关知识的概述(超详细版)
絮絮叨叨: 在深入了解Tomcat源码之前,本来是想亲自写一篇Tomcat的基本使用教程的,在网上兜兜转转发现了这篇博客:https://blog.csdn.net/weixin_40396459/a ...
- Cyber Security - Palo Alto Security Policies(2)
Task 3 The SOC(Security Operation Center) monitoring team dashboard reported more 1,000 requests to ...
- OA系统从选型到实施完整攻略
本文结合一线IT人士分享OA实施经验,单纯地讲述OA的选型与实施,为相关经验较少的IT人士提供真正的帮助. 一.如何选择OA系统 说起OA选型,稳定性.易用性.灵活性.成本和服务少不了.但是,只了解这 ...
- Python3 装饰器解析
第6章 函数 6.1 函数的定义和调用 6.2 参数传递 6.3 函数返回值 6.4 变量作用域 6.5 匿名函数(lambda) 6.6 递归函数 6.7 迭代器 6.8 生成器 6.9 装饰器 6 ...
- iOS打包测试ipa
1. 连接iphone真机 2.选中真机, archive