【AI新趋势期刊#2】AI发明计算机算法,如何给大模型排行,照片秒变二维码,视频一键动漫风
前言
每天都要浏览大量AI相关新闻,是不是感到信息量爆炸,有效信息少?
这么多新产品和新工具,到底哪些是真正是有价值的,哪些只是浮躁的一时热点?
想参与AI产品和工具的开发,从哪里能够获得大量的灵感和思路?
我会把AI相关的新趋势、新想法、新思路,和成熟AI产品、工具、模型等整理在这里,帮助大家去除信息噪音,更高效的了解AI前沿发展。
主要围绕:
- AI业界趋势、想法、思路
- AI产品
- AI开发者工具
- AI模型
作为本期刊的第二期,我们主要围绕2023年5-6月发布的相关信息为主,观众朋友们请注意时效性。
想法/思路
大模型训练的材料会耗尽吗?
以下节选自阮一峰科技周刊中阮老师的个人思考,觉得蛮有意思。
现在的新闻报道,天天有 AI 的新闻,里面会提到很多模型。
分辨模型的强弱,有一个关键指标,就是看它有多少个参数。一般来说,参数的数量越多,模型就越强。
GPT-2 有15亿个参数,GPT-3 和 ChatGPT 有1750亿个,GPT-4 没有公布这个指标,据传比上一代大5倍以上。
那么,什么是参数呢?按照我粗浅的理解,参数相当于模型预测时,所依据的神经网络的节点数量。参数越多,就代表了模型所考虑的各种可能性越多,计算量越大,效果越好。
既然参数越多越好,那么参数会无限增长吗?
答案是不会的,因为参数受到训练材料的制约。必需有足够的训练材料,才能计算出这些参数,如果参数无限增长,训练材料势必也要无限增长。
我看到的一种说法是,训练材料至少应该是参数的10倍。举例来说,一个区分猫照片和狗照片的模型,假定有1,000个参数,那么至少应该用10,000张图片来训练。
ChatGPT 有1750亿个参数,那么训练材料最好不少于17500亿个词元(token)。"词元"就是各种单词和符号,以小说《红楼梦》为例,它有788,451字,就算100万个词元。那么, ChatGPT 的训练材料相当于175万本《红楼梦》。
根据报道,ChatGPT 实际上用了 570 GB 的训练材料,来自维基百科、互联网图书馆、Reddit 论坛、推特等等。
大家想一想,更强大的模型需要更多的训练材料,问题是能找到这么多材料吗,会不会材料有一天不够用?
我告诉大家,真的有学者写过论文,研究这个问题。
过去10年来,AI 训练数据集的增长速度远快于全世界的数据存量的增长速度。如果这种趋势继续下去,耗尽数据存量是不可避免的。
论文给出了三个时间点。
- 2026年:用完一般的语言数据
- 2030年~2050年:用完所有的语言数据
- 2030年~2060年:用完所有的视觉数据
也就是说,根据他们的预测,大概三四年后,新的训练材料就会很难找。最迟三十年后,全世界所有材料都不够 AI 的训练。
上图是作者给的趋势图,虚线是训练材料的增长速度,红线和蓝线是模型增长速度的不同预测。到了2035年以后,这三根线就合在一起了,曲线变得越来越平。作者认为,到了那时,由于没有足够的训练材料,AI 模型的发展速度可能就会显著放缓。如果他的预测是正确的,就意味着,跟大家想的不一样,AI 飞速发展不会持续很久。现在也许就是发展最快的阶段,然后就会开始放慢,等到本世纪中叶就会显著放慢,接近停滞,跟量子物理学的现状差不多。
下面的新闻也讨论了该问题,在这里节选片段。
https://m.thepaper.cn/newsDetail_forward_23467960
什么是模型崩溃?
本质上,当 AI 大模型生成的数据最终污染了后续模型的训练集时,就会发生“模型崩溃”。
论文中写道,“模型崩溃指的是一个退化的学习过程,在这个过程中,随着时间的推移,模型开始遗忘不可能发生的事件,因为模型被它自己对现实的投射所毒化。”
一个假设的场景更有助于理解这一问题。机器学习(ML)模型在包含 100 只猫的图片的数据集上进行训练——其中 10 只猫的毛色为蓝色,90 只猫的毛色为黄色。该模型了解到黄猫更普遍,但也表示蓝猫比实际情况偏黄一点,当被要求生成新数据时,会返回一些代表“绿毛色的猫”的结果。随着时间的推移,蓝色毛色的初始特征会在连续的训练周期中逐渐消失,从逐渐变成绿色,最后变成黄色。这种渐进的扭曲和少数数据特征的最终丢失,就是“模型崩溃”。
笔者认为,虽然训练材料耗尽离我们现在还很遥远,不过如果训练所需要的材料一直以指数级增长,而我们现有的材料又没有跟上时,确实有可能会提前碰到这种瓶颈。
OpenAI支持函数调用功能
关于OpenAI的函数调用功能,一个比喻: 以前让OpenAI回答数学题,只能靠催眠(你是数学专家),然后回答,常常答错; 现在让OpenAI回答数学题,同时给他一个计算器(他知道什么时候该用计算器,但是他自己不会用),当他识别出这是数学题时,会把数字吐给你,你自己再用计算器算结果,再把结果和问题扔给他做回答。这也是很多其他新模型会附带的功能,类似模型插件。
优点:准确又智能。结果是你自己的函数计算的,肯定错不了;
快速整理播客笔记
阿里的通义听悟可以快速整理音频的内容,转化为文字。
我们首先需要下载播客音频,将音频导入通义听悟平台,1 个小时的音频大概只需要 5 分钟导入和处理;
通义听悟处理后,自动生成章节和声音转录的文本(能够区分不同说话人),支持文本翻译成中文;
随后可以根据自动生成的章节或关键词快速跳转收听感兴趣的内容,不感兴趣的一律跳过;随时在右侧做笔记;
AI发明计算机算法
https://www.ithome.com/0/698/425.htm
谷歌人工智能部门 DeepMind 宣布,使用 AI 发现了一种新的算法 AlphaDev,把排序速度提高了 70%,细节可以看原文。
模型
如何给大模型排行?
随着大模型研究的流行,非常多模型在市面上大乱斗,也有非常多的模型排行榜。我们该如何科学的对模型进行排名呢?
在模型硬指标上,有以下几个方面需要对比:
- 模型大小
- 训练数据集
- 训练和推理效率
- 应用领域(单模态/多模态等)
- ...
除开硬指标,我在网上了解了一下,目前针对LLM公认的权威排行机构和论文还比较少,比较知名的有LMSYS
Large Model Systems Organization(LMSYS ORG)是由UC Berkeley与UCSD和CMU合作的学生和教职员工创立的开放研究组织。我们的目标是通过共同开发开放数据集,模型,系统和评估工具来使每个人都可以访问大型模型。我们的工作包括机器学习和系统中的研究。我们培训大型语言模型并使其广泛使用,同时还开发了分布式系统以加速其培训和推理。
国内有一个CLUE排行榜,不过我看了下,感觉有点模仿国外的模型评测GLUE和SuperGLUE的感觉,大家可以参考,但是具体认可度有待观察。
https://github.com/CLUEbenchmark/SuperCLUELYB
文字转音频 Bark
https://github.com/suno-ai/bark
Bark 是由 Suno 创建的基于转换器的文本到音频模型。 Bark 可以生成高度逼真的多语言语音以及其他音频 - 包括音乐、背景噪音和简单的音效。 该模型还可以产生非语言交流,如大笑、叹息和哭泣。 截至6月20号Github已经20k Star。
简单来说,你可以写一段文本,并选择一种语调,给机器朗读。但与此同时,支持:
- 除了英语外,还支持他国语言
- 支持一些非文字的声音,比如清嗓子、大笑、哼哼等
- 通过加上音乐符号♪,让他用唱歌的形式朗读。
- 可以给他输入音频,他会输出模仿声调
- ....(还有很多能力)
支持的语言:
Language | Status |
---|---|
English (en) | |
German (de) | |
Spanish (es) | |
French (fr) | |
Hindi (hi) | |
Italian (it) | |
Japanese (ja) | |
Korean (ko) | |
Polish (pl) | |
Portuguese (pt) | |
Russian (ru) | |
Turkish (tr) | |
Chinese, simplified (zh) |
我个人在HuggingFace试用了一下,真的很牛,不过一开始随便试用时候稍有不慎会出现很奇怪的合成音,听起来蛮恐怖。就和使用Stable Diffusion时画出了非人类的头一样...
生物医学领域大模型
LLaVA-Med:面向生物医学领域的大语言模型和视觉模型
微软发布了LLaVA-Med,要做医药领域的GPT-4,支持多模态。可以识别X光片的信息。
Github:https://github.com/microsoft/LLaVA-Med
北京智源研究院LLM Aquila-7B
Aquila-7B:北京智源研究院开放的国产可商用的LLM
支持中英双语知识、支持商用许可协议、符合国内数据合规要求。后续还会发布33B模型。
Github:https://github.com/FlagAI-Open/FlagAI/tree/master/examples/Aquila
智源研究院和智谱AI同源,后者目前掌握了GLM系列。目前看后续前者更主要做学术研究,后者主要做商业化。
Aquila语言大模型在技术上继承了GPT-3、LLaMA等的架构设计优点,Aquila语言大模型是在中英文高质量语料基础上从0开始训练的,通过数据质量的控制、多种训练的优化方法,实现在更小的数据集、更短的训练时间,获得比其它开源模型更优的性能。也是首个支持中英双语知识、支持商用许可协议、符合国内数据合规需要的大规模开源语言模型。
Aquila-7B和Aquila-33B开源模型使用 智源Aquila系列模型许可协议, 原始代码基于Apache Licence 2.0。
王小川 百川LLM
王小川组建的「百川智能」正式推出首个70亿参数中英文LLM——baichuan-7B。国产、开源、免费、可商用。
Github:https://github.com/baichuan-inc/baichuan-7B
产品
金融GPT:FinGPT
https://github.com/AI4Finance-Foundation/FinGPT
作者使用中国金融市场数据和美国金融市场数据,分别用ChatGLM和LLaMA模型,配合Lora训练,做出了FinGPT
能够实现如下应用:
- 智能投顾
- ChatGPT可以像专业人士一样进行投资建议。
- 在这个例子中,苹果的股价上涨与ChatGPT分析新闻的预测相符。
- 量化交易
- 我们还可以使用新闻、社交媒体推文或者公司公告来构建情感因子,右侧的部分是由Twitter推文和ChatGPT信号产生的交易结果,数据来自于一个称为stocknet-dataset的数据集。
- 正如您从图片中所看到的,由ChatGPT生成的交易信号非常出色,我们甚至可以仅通过根据Twitter情感因子交易而获得良好的结果。
- 因此,我们可以通过结合价格因素来获得更好的结果。
- 低代码开发
- 我们可以使用LLMs的帮助来编写代码。
- 右侧显示了我们如何快速高效地开发我们的因子和其他代码。
微软HuggingGPT
https://huggingface.co/spaces/microsoft/HuggingGPT
解决不同领域和模态的AI任务是迈向人工智能的关键一步。虽然现在有大量的AI模型可以用于解决不同的领域和模态的问题,但是它们不能解决复杂的AI问题。由于大模型(LLM)在语言理解、生成、交互和推理上展现出很强的能力,所以作者认为LLM可以充当一个控制器的作用来管理现有的AI模型以解决复杂的AI任务,并且语言可以成为一个通用的接口来启动AI处理这些任务。基于这个想法,作者提出HuggingGPT,一个框架用于连接不同的AI模型来解决AI任务。
具体的步骤是:
- 任务规划:使用ChatGPT来获取用户请求
- 模型选择:根据Hugging Face中的函数描述选择模型,并用选中的模型执行AI任务
- 任务执行:使用第2步选择的模型执行的任务,总结成回答返回给ChatGPT
- 回答生成:使用ChatGPT融合所有模型的推理,生成回答返回给用户
通过ChatGPT的强语言能力和Hugging Face丰富的模型库,HuggingGPT可以解决大部分复杂的AI任务,为走向真正的人工智能奠定基石。
AI知识库
我自己试了试,有一个很好的思路。当大家写文章,或者做视频没灵感时,可以现在心里想一个主题,让AIbus开始发散思维,进行简单的头脑风暴。
你可以给他设定文字基调:
可以设定文案的阅读受众,生成对应理解力的语句:
假设我要写一篇关于Java String字符串的介绍的博客,我以Java String为关键词,下图是他为我一步步生成的文案,并且配图也是生成的。
我现在越来越觉得写技术博客越来越是个伪命题,尤其是基础知识相关的博客,就算写出来了也是给AI大模型输送营养。
AI视频换风格
给它一个原始视频,然后选择一种想要的风格,AI帮你自动生成新的风格视频。
我自己也用官方Demo视频试了试,它可以支持在生成后视频的基础上再次微调参数,修改提示词,进行迭代。我生成的效果不是特别理想,应该还需要调整。
工具
Vercel 推出AI SDK
Vercel 是知名的云开发服务商,这次它内置了与OpenAI、LangChain和Hugging Face Inference的协作模块,目的是让开发者专注于产品研发,而不是基础设施搭建。 一个预想不一定对:以后做web AI产品,用Vercel和OpenAI就够了。
https://vercel.com/blog/introducing-the-vercel-ai-sdk
通过SD将二维码变成图像
这个网站教你如何使用 Stable Diffusion,将二维码变成一幅图像。
我觉得这个很有意义,很多地方商家张贴各种二维码真的很丑,如果能够植入商家的宣传图片,比如美食,产品,人像,是真的有用,可以商业化。
https://stable-diffusion-art.com/qr-code/
参考
Meta360创新学院-AGI前夜
Github Trending
【AI新趋势期刊#2】AI发明计算机算法,如何给大模型排行,照片秒变二维码,视频一键动漫风的更多相关文章
- 致研究者:2018 AI 研究趋势
2017 年是机器学习领域最有成效.最具创意的一年.现在已经有很多博文以及官方报道总结了学界和业界的重大突破.本文略有不同,Alex Honchar在Medium发文,从研究者的角度分享机器学习明年发 ...
- HMS Core Discovery第16期回顾|与虎墩一起,玩转AI新“声”态
HMS Core 在AI领域最新的技术能力有哪些?本期Discovery直播以<与虎墩一起,玩转AI新"声"态>为主题,邀请了HMS Core 机器学习服务产品经理.机 ...
- 亚马逊云科技现身世界人工智能大会,揭示AI最新技术趋势
2022世界人工智能大会(WAIC)于日前落幕.经过过去四届的发展与沉淀,今天的世界人工智能大会已成为人工智能领域最有影响力的国际盛会之一,今年大咖云集.国际大厂扎堆,充分彰显了大会的国际影响力和磁力 ...
- 昇腾AI新技能,还能预防猪生病?
摘要:日前,由华为与武汉伯生科技基于昇腾AI合作研发的"思符(SiFold)蛋白质结构预测平台"正式推出,并成功应用于国药集团动物保健股份有限公司的猪圆环病毒疫苗研发中. 本文分享 ...
- 学习笔记DL002:AI、机器学习、表示学习、深度学习,第一次大衰退
AI早期成就,相对朴素形式化环境,不要求世界知识.如IBM深蓝(Deep Blue)国际象棋系统,1997,击败世界冠军Garry Kasparov(Hsu,2002).国际象棋,简单领域,64个位置 ...
- 算法与AI的暗黑面:3星|《算法的陷阱:超级平台、算法垄断与场景欺骗》
算法的陷阱:超级平台.算法垄断与场景欺骗 全书讲算法与AI的暗黑面:价格歧视.导致算法军备竞赛.导致商家降价冲动降低.平台作恶(向劣质商家收费导致品质下降.与开发商一起分析用户隐私)等. 作者从商业. ...
- 一个AI产品经理怎么看AI的发展
一个AI产品经理怎么看AI的发展 https://www.jianshu.com/p/bed6b22ae837 最近一直在思考这个问题,人工智能接下来的几年会有什么样的发展,是否真的能够在很多工作岗位 ...
- LiveVideoStack Meet|深圳 多媒体开发新趋势
2018年初始,音视频技术生态并不平静,Codec争夺愈加激烈,新一代标准的挑战一浪高过一浪:WebRTC的定版也为打通浏览器.移动端乃至IoT带来了机会:此外AI.区块链技术的兴起,催化着与多媒体领 ...
- 华为高级研究员谢凌曦:下一代AI将走向何方?盘古大模型探路之旅
摘要:为了更深入理解千亿参数的盘古大模型,华为云社区采访到了华为云EI盘古团队高级研究员谢凌曦.谢博士以非常通俗的方式为我们娓娓道来了盘古大模型研发的"前世今生",以及它背后的艰难 ...
- [转]Web3.0时代,企业知识管理新趋势
[转自http://www.amt.com.cn/html/ManageFront/AMTPoint0/2014/0716/1370.html] Web3.0时代,企业知识管理新趋势 2014-07- ...
随机推荐
- C# 证件照替换底色、设置背景图
软件说明 基于以下开源项目,做了再次封装 PaddleSegSharp: 本项目是一个基于百度飞桨PaddleSeg项目的人像分割模块而开发的.NET的工具类库.PaddleSeg是基于飞桨Paddl ...
- layui框架使用单页面弹出层组件layer
layui实现单页面弹出层 首先需要导入layui的js和css: <link rel="stylesheet" href="layui/css/layui.css ...
- 5W1H聊开源之Why——为什么要参与开源?
中国开源的发展速度发展加快,个人和组织对于为开源作贡献有着前所未有的激情.据<2020年IT行业项目管理调查报告>,约四成受访者以自己开发开源项目.为他人提交项目代码.作为成员开发维护项目 ...
- #K-D Tree#BZOJ 4303 数列
题目传送门 分析 将 \((i,p_i)\) 视为一个点,那么相当于对横坐标或纵坐标对应的点区间乘.区间加或者区间求和, 把这些点丢到 K-D Tree 上,维护最小/大横/纵坐标,如果当前区间点在范 ...
- #并查集#JZOJ 4223 旅游
题目 多次询问有多少个无序点对\((x,y)\), 满足至少有一条最大边权\(\leq d\)的路径 分析 离线询问,用并查集加边,每次产生的贡献为\(2*siz[x]*siz[y]\) 代码 #in ...
- OpenAtom OpenHarmony三方库创建发布及安全隐私检测
OpenAtom OpenHarmony三方库(以下简称"三方库"或"包"),是经过验证可在OpenHarmony系统上可重复使用的软件组件,可帮助开发者快速开 ...
- 构筑智能未来的开源 .Net AI知识库/智能体项目
在这个信息爆炸的时代,我们如何快速准确地从汪洋大海的数据中抽取真正有价值的知识呢?AntSK,一个基于.NET开发的人工智能知识库和智能体项目,似乎给出了一个新颖的答案.今天,就让我们一起深入了解An ...
- IDEA社区版,真香!
IDEA(IntelliJ IDEA)是众多 Java 开发者的首选. 商业版的昂贵 IDEA 商业版(IntelliJ IDEA Ultimate)功能非常强大,能够满足 Java 开发的所有需求, ...
- 新手真的别再用过时的jenkins freestyle了,10分钟教你搞定快速编写jenksinfile,快速离线调试
Pipeline是一套运行于jenkins上的工作流框架,将原本独立运行于单个或者多个节点的任务连接起来,实现单个任务难以完成的复杂流程编排与可视化.它通过Domain Specific Langua ...
- 基于istio实现多集群流量治理
本文分享自华为云社区<基于istio实现多集群流量治理>,作者: 可以交个朋友. 一 背景 对多云.混合云等异构基础设施的服务治理是Istio重点支持的场景之一.为了提高服务的可用性,避免 ...