这个tutorial的契机是yy突然看到了一个workshop 所以类似于一周大作业的形式,输入command输出使用了自动驾驶哪些模块,代码在这里 所以就干一干,顺便写一个tutorial给大家参考和教程 引申更多的应用

参考资料:

  1. https://github.com/facebookresearch/codellamahttps://github.com/facebookresearch/llama
  2. 模型申请地址:https://ai.meta.com/llama/ → 然后按download,填写完后 就会收到两封邮件
  3. https://github.com/oobabooga/text-generation-webui
  4. 写tutorial期间的代码:https://github.com/KTH-RPL/DriveCmd_LLM

所有模型参数和所需要的GPU并行,注意这只是模型load占用的memory 如果token或者batch size较大 也需要很多GPU显存,表格下方会说明每个之间的区别,MP是指并行GPU的数量 默认是多少,所有模型我都在 这边服务器的A100试过 Size已经是乘过数量的了 是总和需要的memory

Model Size MP
code-7B ~12.5G 1
code-13B 24G 2
code-34B 63G 4
7b-chat ~12.5G 1
13b-chat 24G 2
70b-chat ~160G 8

  • 7B, 13B, 34B 指示模型参数量
  • chat 指示经过了对话的fine-tuned 【 llama2论文原文:a fine-tuned version of Llama 2 that is optimized for dialogue use cases】
  • code 指示此llama版本经过了code数据集的训练,can use text prompts to generate and discuss code. 此处为 官方blog

温馨提示 下列内容和 此 https://github.com/KTH-RPL/DriveCmd_LLM README 有重复:里面包含了example和我们写的prompt流程等 and yy尝试的chatgpt api那边的script

1. 申请下载模型

具体如图:

  1. https://ai.meta.com/llama/ 点击download
  2. 填写资料,勾上所有的东西
  3. 接受terms 然后点continue
  4. 大概10分钟内能收到两封邮件,告诉你可用的权重和其下载地址【注意!这个地址有限制比如下载超过3次/24小时后 请重新返回步骤一】

2. 模型部署

正如前言中提到的,大部分本地自己用的电脑 可能只能跑最小的模型也就是7b的 GPU的占用率大概是12G,如下图为我运行repo里的代码时占用截图 【上一个A100试了一下 这么一看我本机3090 也带不动】

内存的增大原因:

  • prompt 长短 也就是你给模型的输入文字 可能很多 【这也是为什么chatgpt按token收费
  • 输出的语句长短 也就是模型给你的回答 【我这因为让他解释他的输出了 所以也比较长

回归正题,接下来是clone两边的代码,一个是code一个是llama 前者经过了八股文、leetcode训练【我是这么理解的 hhh 通俗易懂】 后者是原生态

  1. https://github.com/facebookresearch/llama, 注意复制链接的时候 也别给错了 看对邮件给
  2. https://github.com/facebookresearch/codellama 同上理

以下为演示截图

  1. git clone 对应代码
  2. 进入文件夹
  3. 运行download.sh
  4. copy 邮件里收到的下载链接【第一次没看仔细 一直在填自己的email 可还行
  5. 选择下载什么模型,注意全部下载的话 可能比较大 建议硬盘空间不够的 选一个最小的 先试试

3. 模型运行

这一步官方的README写的挺不错的,依赖很少 照着pip install -r requirements.txt就行,基本无障碍,最好是建一个conda的环境,别和系统混了,此处为运行示例:

torchrun --nproc_per_node 1 example_completion.py \
--ckpt_dir CodeLlama-7b/ \
--tokenizer_path CodeLlama-7b/tokenizer.model \
--max_seq_len 128 --max_batch_size 4

截图运行及GPU占用:

正常我们想要的应该是chat 聊天形式的所以选择以下模型会有更好的效果:

Model Size MP
CodeLlama-7b-Instruct ~12.5G 1
CodeLlama-13b-Instruct 24G 2
CodeLlama-34b-Instruct 63G 4
llama-2-7b-chat ~12.5G 1
llama-2-13b-chat 24G 2
llama-2-70b-chat ~160G 8

4. More

可以参考 前言中我提到的task 给出的一个结果调用,这里是任务的报告pdf:https://arxiv.org/abs/2311.08206 更方便大家直接选择和对比

还有就是如果想自己部署一个chatgpt,或者是在苹果系统下(which 内存就是显卡内存 可以参考这个b站视频:苹果M2 Ultra:AI大模型的新希望

自己部署一个chatgpt参考code:

部署后的示意图:

同时这里面也提到了其他的大语言模型 可以尝试的:Multiple model backends: transformers, llama.cpp, ExLlama, ExLlamaV2, AutoGPTQ, GPTQ-for-LLaMa, CTransformers, AutoAWQ

还有一些vision assistance的模型可以一起,免费版chatgpt 4.0 (但是试了一下即使是70B的 效果在我们的任务上也没有 3.5API调用的高,果然还是钱的问题

其中有一个大视觉语言模型 可以关注:https://github.com/haotian-liu/LLaVA

5. Llama2 论文速读

主要是记录一下一些细节 比如模型和模型之间的不同,fine-tuned的实现等。

首先是关于llama2-chat的训练,如下图:得到llama2后 经过RLHF 步骤得到的chat模型 【RLHF 是一种模型训练过程,应用于微调的语言模型,以进一步使模型行为与人类偏好和指令遵循保持一致。】

下图说明了 训练的一些细节:

  • token是指将所有number 拆分成独立的digits 然后使用use bytes 去decompose 未知的UTF-8,总的词汇是32k token
  • 预训练 2T 的token后 模型也没有饱和

【随手记录】Llama Tutorial 大语言模型实践的更多相关文章

  1. 本地推理,单机运行,MacM1芯片系统基于大语言模型C++版本LLaMA部署“本地版”的ChatGPT

    OpenAI公司基于GPT模型的ChatGPT风光无两,眼看它起朱楼,眼看它宴宾客,FaceBook终于坐不住了,发布了同样基于LLM的人工智能大语言模型LLaMA,号称包含70亿.130亿.330亿 ...

  2. 大数据实践:ODI 和 Twitter (一)

    本文利用twitter做为数据源,介绍使用Oracle大数据平台及Oralce Data Integrator工具,完成从twitter抽取数据,在hadoop平台上处理数据,并最终加载到oracle ...

  3. 大众点评的大数据实践-CSDN.NET

    大众点评的大数据实践-CSDN.NET 大众点评的大数据实践 爬虫工程师成大数据时代的"宠儿" - 杭州新闻中心 - 杭州网 爬虫工程师成大数据时代的"宠儿"

  4. 大数据实践:ODI 和 Twitter (二)

    大数据实践:ODI和Twitter(二) 在前面的文章中,我们已经使用flume将数据从twitter抓取到Hive中,现在我们来看看ODI(Oracle Data Integrator)如何在HIV ...

  5. 删除Git记录里的大文件

    删除Git记录里的大文件 仓库自身的增长 大多数版本控制系统存储的是一组初始文件,以及每个文件随着时间的演进而逐步积累起来的差异:而 Git 则会把文件的每一个差异化版本都记录在案.这意味着,即使你只 ...

  6. SNF快速开发平台2019-权限管理模型-记录级-字段级权限实践

    1.1.1  字段级权限 字段级权限适用于对不同人的能否查看或录入不同表不同字段的权限控制. 是否启用字段级权限配置 不启用字段级权限后,[用户权限管理]程序[字段级权限]按钮会隐藏,导致无法给管理其 ...

  7. Hugging News #0324: 🤖️ 黑客松结果揭晓、一键部署谷歌最新大语言模型、Gradio 新版发布,更新超多!

    每一周,我们的同事都会向社区的成员们发布一些关于 Hugging Face 相关的更新,包括我们的产品和平台更新.社区活动.学习资源和内容更新.开源库和模型更新等,我们将其称之为「Hugging Ne ...

  8. 使用 LoRA 和 Hugging Face 高效训练大语言模型

    在本文中,我们将展示如何使用 大语言模型低秩适配 (Low-Rank Adaptation of Large Language Models,LoRA) 技术在单 GPU 上微调 110 亿参数的 F ...

  9. pytorch在有限的资源下部署大语言模型(以ChatGLM-6B为例)

    pytorch在有限的资源下部署大语言模型(以ChatGLM-6B为例) Part1知识准备 在PyTorch中加载预训练的模型时,通常的工作流程是这样的: my_model = ModelClass ...

  10. 保姆级教程:用GPU云主机搭建AI大语言模型并用Flask封装成API,实现用户与模型对话

    导读 在当今的人工智能时代,大型AI模型已成为获得人工智能应用程序的关键.但是,这些巨大的模型需要庞大的计算资源和存储空间,因此搭建这些模型并对它们进行交互需要强大的计算能力,这通常需要使用云计算服务 ...

随机推荐

  1. Libvirtd networks -- 为libvirtd 中虚拟机指定ip遇到的问题

    backgroup 为libvirtd 中虚拟机指定ip,操作如下: virsh --connect qemu:///system dumpxml vm01 | grep "mac addr ...

  2. 从序号和确认号理解TCP三次握手

    头部信息 TCP首部存储的数据和建立连接有关,具体每个字段的用途可以参考这一篇文章,其中序号和确认号决定了发送数据的内容. 头部中间部分"保留"和"窗口"中间是 ...

  3. VMware中的三种网络模式

    1.桥接模式网络 通过桥接模式网络连接,虚拟机中的虚拟网络适配器可连接到主机中的物理网络适配器.虚拟机可通过主机网络适配器连接到主机系统所用的 LAN.桥接模式网络连接支持有线和无线主机网络适配器. ...

  4. [selenium]点击元素出现的obscure问题

    前言 我们一般使用如下方式点击元素: elem = driver.find_element(...) elem.click() # 或者使用带等待条件的方式 elem = WebDriverWait( ...

  5. pyqt5学习日记

    前提需要pip安装PyQt5与PyQt5-tools 安装后会有qtdesigner.exe和pyuic5.exe,用everything直接可以搜索到 qtdesigner.exe是来设计ui的 p ...

  6. C++函数参数匹配规则

    C++ 函数参数匹配 1 单个参数匹配 void f(); //f1 void f(int); //f2 void f(int, int); //f3 void f(double, double=3. ...

  7. 搭建LNMP 架构

    搭建LNMP 架构 环境准备 lnmp 需要 安装 nginx mysql php 软件 #关闭防火墙 systemctl disable --now firewalld #临时禁用SELinux的强 ...

  8. ViTPose+:迈向通用身体姿态估计的视觉Transformer基础模型

    身体姿态估计旨在识别出给定图像中人或者动物实例身体的关键点,除了典型的身体骨骼关键点,还可以包括手.脚.脸部等关键点,是计算机视觉领域的基本任务之一.目前,视觉transformer已经在识别.检测. ...

  9. DevSecOps之应用安全测试工具及选型

    上篇文章,有同学私信想了解有哪些DevSecOps工具,这里整理出来,供大家参考(PS: 非专业安全人士,仅从DevOps建设角度,给出自己见解) 软件中的漏洞和弱点很常见:84%的软件漏洞都是利用应 ...

  10. Towards Network Anomaly Detection Using Graph Embedding笔记

    Towards Network Anomaly Detection Using Graph Embedding 目录 Towards Network Anomaly Detection Using G ...