Ehab's REAL Number Theory Problem

题目描述

You are given an array $ a $ of length $ n $ that has a special condition: every element in this array has at most 7 divisors. Find the length of the shortest non-empty subsequence of this array product of whose elements is a perfect square.

A sequence $ a $ is a subsequence of an array $ b $ if $ a $ can be obtained from $ b $ by deletion of several (possibly, zero or all) elements.

输入格式

The first line contains an integer $ n $ ( $ 1 \le n \le 10^5 $ ) — the length of $ a $ .

The second line contains $ n $ integers $ a_1 $ , $ a_2 $ , $ \ldots $ , $ a_{n} $ ( $ 1 \le a_i \le 10^6 $ ) — the elements of the array $ a $ .

输出格式

Output the length of the shortest non-empty subsequence of $ a $ product of whose elements is a perfect square. If there are several shortest subsequences, you can find any of them. If there's no such subsequence, print "-1".

样例 #1

样例输入 #1

3
1 4 6

样例输出 #1

1

样例 #2

样例输入 #2

4
2 3 6 6

样例输出 #2

2

样例 #3

样例输入 #3

3
6 15 10

样例输出 #3

3

样例 #4

样例输入 #4

4
2 3 5 7

样例输出 #4

-1

提示

In the first sample, you can choose a subsequence $ [1] $ .

In the second sample, you can choose a subsequence $ [6, 6] $ .

In the third sample, you can choose a subsequence $ [6, 15, 10] $ .

In the fourth sample, there is no such subsequence.

至多7个因子是什么条件?仔细分析,其实是说明这个数至多有两个不同质因数。

要求一个序列的所有数相乘为完全平方。也就代表任意一个质因数的次数之和为偶数。那么在某一个数中,如果有一个质因数出现了偶数次,那他很没用,出现了和没出现一个样,我们就可以不理他。然后现在要求选出来的序列每种质因数出现偶数次,会想到一件事。如果有一个数的质因数是 \((u,v)\),那么就一定需要一个含有 \(u\) 的数和一个含有 \(v\) 的数,然后往后又要推。最后一定是一个环。所以考虑最小环构图。

构图很简单,如果存在一个数 \(a_i=u\times v\)( \(u,v\) 为质数),那么就可以从 \(u\) 向 \(v\) 连一条无向边。如果一个数次数为奇数的质因数只有一个,那就把质因数 \(p\) 和 \(1\) 连边。

现在到了跑最小环。最小环问题解法可以使用 Floyd,但是这里完全行不通。注意到这里的边是无权的,对于最小环,有一种 \(O(n^2)\) 的算法。钦定一个一定在最小环上的点 \(x\),用它跑出一棵 bfs 树。然后对于一条不在树上的边 \((u,v)\),设点 \(x\) 到点 \(y\) 的最短路为 \(d_y\),那么如果点 \(x\) 和点 \((u,v)\) 要同时在最小环上,最小环长为 \(d_u+d_v+1\)。

或许有人会问,如果点 \((u,v)\) 在 bfs 树上的 lca 不为点 \(x\),怎么办?其实没关系,因为等我枚举 \(x\) 枚举到他们的 lca 时,自然就会把那个环算入了。

\(O(n^2)\) 的复杂度仍然不能接受,但发现不存在两个数 \(x,y\ge 1000\),同时又有连边。这说明,最小环上一定有一个点 \(x\le1000\)。所以我们枚举在环上的点时只用枚举小于等于1000的质数就行了。

复杂度 \(O(\frac{n\sqrt{n}}{logn})\)

#include<bits/stdc++.h>
using namespace std;
const int N=1e5+5,M=1e6+5;
int n,a[N],pri[M],hd[M],dp[M],q[M],l,r,ans=2000000000,e_num(1),pw[M];
vector<int>g[M];
struct edge{
int v,nxt,f;
}e[N<<1];
void add_edge(int u,int v)
{
e[++e_num]=(edge){v,hd[u]};
hd[u]=e_num;
}
void run(int x)
{
memset(dp,0,sizeof(dp));
dp[q[l=r=1]=x]=1;
for(int i=2;i<=e_num;i++)
e[i].f=0;
while(l<=r)
{
int k=q[l];
++l;
for(int i=hd[k];i;i=e[i].nxt)
{
if(!dp[e[i].v])
{
e[i^1].f=1;
dp[e[i].v]=dp[k]+1;
q[++r]=e[i].v;
}
else if(!e[i].f)
{
// printf("%d %d %d\n",x,k,e[i].v);
ans=min(ans,dp[k]+dp[e[i].v]-1);
}
}
}
}
int main()
{
for(int i=2;i<M;i++)
{
// printf("%d\n",i);
if(!pri[i])
{
for(int j=1;j*i<M;j++)
{
pri[j*i]=1;
if(j%i==0)
pw[j]=pw[j/i]^1;
if(!pw[j])
g[j*i].push_back(i);
}
for(int j=1;j*i<M;j++)
pw[j]=0;
}
}
// puts("hjhakioi");
// for(int i=1;i<M;i++)
// {
// printf("%d\n",i);
// for(int j=0;j<g[i].size();j++)
// printf("%d ",g[i][j]);
// putchar('\n');
// }
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
scanf("%d",a+i);
if(g[a[i]].size()==1)
{
add_edge(1,g[a[i]][0]);
add_edge(g[a[i]][0],1);
}
else if(g[a[i]].size())
{
add_edge(g[a[i]][0],g[a[i]][1]);
add_edge(g[a[i]][1],g[a[i]][0]);
}
else
{
printf("1");
return 0;
}
}
for(int i=1;i<=1000;i++)
run(i);
if(ans>n)
printf("-1");
else
printf("%d",ans);
}

[CF1325E] Ehab's REAL Number Theory Problem的更多相关文章

  1. [E. Ehab's REAL Number Theory Problem](https://codeforces.com/contest/1325/problem/E) 数论+图论 求最小环

    E. Ehab's REAL Number Theory Problem 数论+图论 求最小环 题目大意: 给你一个n大小的数列,数列里的每一个元素满足以下要求: 数据范围是:\(1<=a_i& ...

  2. 题解-Ehab's REAL Number Theory Problem

    Ehab's REAL Number Theory Problem 前置知识 质数 分解质因数 无向无权图最小环<讲> Ehab's REAL Number Theory Problem/ ...

  3. Number Theory Problem(The 2016 ACM-ICPC Asia China-Final Contest 找规律)

    题目: Mr. Panda is one of the top specialists on number theory all over the world. Now Mr. Panda is in ...

  4. Gym 101194A / UVALive 7897 - Number Theory Problem - [找规律水题][2016 EC-Final Problem A]

    题目链接: http://codeforces.com/gym/101194/attachments https://icpcarchive.ecs.baylor.edu/index.php?opti ...

  5. A. Number Theory Problem

    题目大意:计算小于2^n,且满足2^k-1并且是7的倍数的个数 思路:优先打表,数据不大,1e5,然后求个前n项和 #include<bits/stdc++.h> using namesp ...

  6. How to solve the SVDI SN Number Display Problem

    Yesterday we have learn how to find the SVDI Serial Number, today one of customer from UK look our a ...

  7. Codeforces 1088E Ehab and a component choosing problem

    Ehab and a component choosing problem 如果有多个连接件那么这几个连接件一定是一样大的, 所以我们先找到值最大的连通块这个肯定是分数的答案. dp[ i ]表示对于 ...

  8. 2016级算法第二次上机-F.ModricWang's Number Theory II

    891 ModricWang's Number Theory II 思路 使得序列的最大公约数不为1,就是大于等于2,就是找到一个大于等于2的数,它能够整除序列中的所有数. 考虑使得一个数d整除数组中 ...

  9. Codeforces Round #525 (Div. 2)E. Ehab and a component choosing problem

    E. Ehab and a component choosing problem 题目链接:https://codeforces.com/contest/1088/problem/E 题意: 给出一个 ...

  10. Codeforces Round #525 (Div. 2)D. Ehab and another another xor problem

    D. Ehab and another another xor problem 题目链接:https://codeforces.com/contest/1088/problem/D Descripti ...

随机推荐

  1. 《Kali渗透基础》12. 无线渗透(二)

    @ 目录 1:无线协议栈 1.1:ifconfig 1.2:iwconfig 1.3:iw 1.4:iwlist 2:无线网卡配置 2.1:查看无线网卡 2.2:查看信道频率 2.3:扫描附近 AP ...

  2. Laf & 中大猫谱:让每一只流浪猫都有家

    猫谱简介 中大猫谱是一款辅助校园流浪猫救助的开源小程序项目,服务端使用 Laf 云开发. 猫谱主要功能包括:猫咪信息登记.照片分享.拍照识猫.公告和留言等.项目创立的初衷,是解决校园猫猫交流群里的一个 ...

  3. FFmpeg中的常用结构体分析

    一.前言 在学习使用FFmpeg进行编解码时,我们有必要先去熟悉FFmpeg中的常用结构体,只有对它们的含义和用途有深刻的了解,我们才能为后面的学习打下坚实的基础.所以,这篇文章将会介绍这些常用的结构 ...

  4. 斜率优化DP 学习笔记

    斜率优化 DP 适用情况 适用于求解最优解(最大.最小)问题. 上凸壳与下凸壳 求解步骤 对于任意状态转义方程,设 \(A_i\),\(B_i\),使状态转移方程转化为 \(f_i = \min(f_ ...

  5. c语言代码练习6

    //输入三个数字,依次按照从大到小输出#define _CRT_SECURE_NO_WARNINGS 1 #include <stdio.h> int main() { int a = 0 ...

  6. Django框架项目之项目基础——项目介绍、需求分析、pip安装源、环境搭建、前台、后台、跨域请求

    文章目录 1 路飞学城 1.1 企业的web项目类型 1.2 企业项目开发流程 1.3 立项申请阶段 2. 需求分析 2.1 首页 2.2 登录注册 2.3 课程列表 2.4 课程详情 2.5 购物车 ...

  7. MySQL的sql_mode设置导致报错1292

    在MySQL8.0的一个PXC集群中,默认的sql_mode设置如下: select @@sql_mode; +-------------------------------------------- ...

  8. 文心一言 VS 讯飞星火 VS chatgpt (109)-- 算法导论10.1 7题

    七.用go语言,说明如何用两个队列实现一个栈,并分析相关栈操作的运行时间. 文心一言: 在Go语言中,我们可以用两个队列(queue1和queue2)实现一个栈.以下是实现代码: package ma ...

  9. Flink测试利器之DataGen初探

    什么是 Flinksql Flink SQL 是基于 Apache Calcite 的 SQL 解析器和优化器构建的,支持ANSI SQL 标准,允许使用标准的 SQL 语句来处理流式和批处理数据.通 ...

  10. ABP中关于Swagger的一些配置

    Abp 集成 Swagger 官方文档, 请参考 Swagger Integration AspNetCore 配置 Swagger, 请参考 Swashbuckle.AspNetCore 本文的项目 ...