题目

一个长度为\(n\)的非负整数序列,

需要满足\(m\)个区间或值为阈值的限制条件

现在要构造一个这样的序列,不存在输出No


分析

线段树支持区间与,但查询区间或,下传标记,那就很好做了


代码

#include <cstdio>
#include <cctype>
#define rr register
using namespace std;
const int inf = (1 << 30) - 1, N = 100011;
int a[N], w[N << 2], lazy[N << 2], n, m, l[N], r[N], z[N];
inline signed iut() {
rr int ans = 0;
rr char c = getchar();
while (!isdigit(c)) c = getchar();
while (isdigit(c)) ans = (ans << 3) + (ans << 1) + (c ^ 48), c = getchar();
return ans;
}
inline void print(int ans) {
if (ans > 9)
print(ans / 10);
putchar(ans % 10 + 48);
}
inline void build(int k, int l, int r) {
w[k] = lazy[k] = inf;
if (l == r)
return;
rr int mid = (l + r) >> 1;
build(k << 1, l, mid);
build(k << 1 | 1, mid + 1, r);
}
inline void pdown(int k) {
w[k << 1] &= lazy[k], w[k << 1 | 1] &= lazy[k], lazy[k << 1] &= lazy[k], lazy[k << 1 | 1] &= lazy[k],
lazy[k] = inf;
}
inline void update(int k, int l, int r, int x, int y, int z) {
if (l == x && r == y) {
w[k] &= z, lazy[k] &= z;
return;
}
rr int mid = (l + r) >> 1;
if (lazy[k] ^ inf)
pdown(k);
if (y <= mid)
update(k << 1, l, mid, x, y, z);
else if (x > mid)
update(k << 1 | 1, mid + 1, r, x, y, z);
else
update(k << 1, l, mid, x, mid, z), update(k << 1 | 1, mid + 1, r, mid + 1, y, z);
w[k] = w[k << 1] | w[k << 1 | 1];
}
inline signed query(int k, int l, int r, int x, int y) {
if (l == x && r == y)
return w[k];
rr int mid = (l + r) >> 1;
if (lazy[k] ^ inf)
pdown(k);
if (y <= mid)
return query(k << 1, l, mid, x, y);
else if (x > mid)
return query(k << 1 | 1, mid + 1, r, x, y);
else
return query(k << 1, l, mid, x, mid) | query(k << 1 | 1, mid + 1, r, mid + 1, y);
}
inline void dfs(int k, int l, int r) {
if (l == r) {
a[l] = w[k];
return;
};
rr int mid = (l + r) >> 1;
if (lazy[k] ^ inf)
pdown(k);
dfs(k << 1, l, mid);
dfs(k << 1 | 1, mid + 1, r);
w[k] = w[k << 1] | w[k << 1 | 1];
}
signed main() {
freopen("or.in", "r", stdin);
freopen("or.out", "w", stdout);
n = iut(), m = iut(), build(1, 1, n);
for (rr int i = 1; i <= m; ++i) {
l[i] = iut(), r[i] = iut(), z[i] = iut();
update(1, 1, n, l[i], r[i], z[i]);
}
for (rr int i = 1; i <= m; ++i)
if (query(1, 1, n, l[i], r[i]) < z[i])
return !printf("No");
dfs(1, 1, n), printf("Yes");
for (rr int i = 1; i <= n; ++i) putchar(i == 1 ? 10 : 32), print(a[i]);
return 0;
}

#线段树、构造#A 或位运算的更多相关文章

  1. [IOI2018]机械娃娃——线段树+构造

    题目链接: IOI2018doll 题目大意:有一个起点和$m$个触发器,给出一个长度为$n$的序列$a$,要求从起点出发按$a$的顺序经过触发器并回到起点(一个触发器可能被经过多次也可能不被经过), ...

  2. Codeforces482B【线段树构造】

    题意: 有M个限制,每个限制有l,r,q,表示从a[l]~a[r]取且后的数一定为q,问是否有满足的数列. 思路: 看到大牛说是线段树,线段树对于区间操作,印象中乘啊,+啊,-啊都不错,但是并没有就是 ...

  3. CF R638 div2 F Phoenix and Memory 贪心 线段树 构造 Hall定理

    LINK:Phoenix and Memory 这场比赛标题好评 都是以凤凰这个单词开头的 有凤来仪吧. 其实和Hall定理关系不大. 不过这个定理有的时候会由于 先简述一下. 对于一张二分图 左边集 ...

  4. codeforces 671C Ultimate Weirdness of an Array 线段树+构造

    题解上说的很清楚了,我照着写的,表示膜拜题解 然后时间复杂度我觉得应该是O(nlogn),虽然常数略大,预处理和倒着扫,都是O(nlogn) #include <stdio.h> #inc ...

  5. HDU1166 敌兵布阵_线段树

    敌兵布阵 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submis ...

  6. 洛谷P2574 XOR的艺术(线段树)——Chemist

    当线段树遇上无敌位运算! 还是老套路,线段树维护区间和,一个区间有几个"1"就是这个区间的区间和,同时支持区间修改区间查询,只不过操作从加法变成了异或.主要难点就在更新懒标记那里, ...

  7. 校内模拟赛T5:连续的“包含”子串长度( nekameleoni?) —— 线段树单点修改,区间查询 + 尺取法合并

    nekameleoni 区间查询和修改 给定N,K,M(N个整数序列,范围1~K,M次查询或修改) 如果是修改,则输入三个数,第一个数为1代表修改,第二个数为将N个数中第i个数做修改,第三个数为修改成 ...

  8. [YNOI2017][bzoj4811][luogu3613] 由乃的OJ/睡觉困难综合症 [压位+树链剖分+线段树]

    题面 BZOJ题面,比较不清晰 Luogu题面,写的比较清楚 思路 原题目 我们先看这道题的原题目NOI2014起床困难综合症 的确就是上树的带修改版本 那么我们先来解决这个原版的序列上单次询问 二进 ...

  9. Subsequence Count (线段树)

    Time Limit: 1000 ms   Memory Limit: 256 MB Description 给定一个01串 $S_{1 \cdots n}$ 和 $Q$ 个操作. 操作有两种类型: ...

  10. 线段树(segment_tree)

    线段树之——区间修改区间查询 1.概述 线段树,也叫区间树,是一个完全二叉树,它在各个节点保存一条线段(即“子数组”),因而常用于解决数列维护问题,基本能保证每个操作的复杂度为O(lgN). 线段树是 ...

随机推荐

  1. Eharts立体柱状图

    一下这三个div大小不一样 为了保证每次柱状图渲染正确 添加key <div class="echart1" id="dangerChart1" key= ...

  2. iOS 面向对象与类

    至于未来会怎样,要走下去才知道反正路还很长,天总会亮. 1. 面向对象 1.1 什么是面向对象(OOP) 面向对象 Object Oriented Programming.在软件开发中,我们虽然用的是 ...

  3. 08-Redis系列之-Redis布隆过滤器,MySQL主从,Django读写分离

    Redis实现布隆过滤器 前言 布隆过滤器使用场景 比如有如下几个需求: 原本有10亿个号码,现在又来了10万个号码,要快速准确判断这10万个号码是否在10亿个号码库中? 解决办法一:将10亿个号码存 ...

  4. 【LeetCode剑指offer#05】回文链表的两种解法+删除链表中间节点(链表的基本操作)

    回文链表 给你一个单链表的头节点 head ,请你判断该链表是否为回文链表.如果是,返回 true :否则,返回 false . 示例 1: 输入:head = [1,2,2,1] 输出:true 示 ...

  5. 【Azure 应用服务】Azure App Service多实例中,出现某一个实例CPU居高不下的情况,如何重启单个实例呢?

    问题描述 在使用App Service服务中,当多实例中,其中一个实例出现高CPU,高Memory的情况,为了尽可能少的影响正在运行的应用,需要单独重启某一个实例的情况下,如何手动操作呢? 问题解答 ...

  6. 【夏令时】用@JsonFormat(pattern = “yyyy-MM-dd“)注解,出生日期竟然年轻了一天

    前言 缘由 用@JsonFormat(pattern = "yyyy-MM-dd")注解,出生日期竟然年轻了一天 艺术源于生活,bug源于开发. 起因是艰苦奋战一个月,测试及验收都 ...

  7. 15. JVM垃圾回收器详解

    1. 垃圾回收器的分类 和 GC性能指标 垃圾收集器没有在规范中进行过多的规定,可以由不同的厂商.不同版本的JVM来实现. 由于JDK的版本处于高速迭代过程中,因此Java发展至今已经衍生了众多的GC ...

  8. Docker部署clickhouse

    Clickhouse特点 完备的DBMS:不仅是个数据库,也是个数据库系统 列存储和数据压缩:典型的olap数据库特性 向量化并行:利用CPU的SIMD(Single INstruction MUlt ...

  9. git 常见命令和资源

    git练习 常用git清单 强制切换分支所指位置 git branch -f main c3强制分支main指向c3 git branch -f main HEAD~3强制分支main指向head的父 ...

  10. XAF Number(编号)

    前言 编号在各类系统中都会存在,同时它还会根据业务场景的不同,会有不同的生成规则.XAF提供了一个编号生成助手(DistributedIdGeneratorHelper),它能在多并发的情况下,生成一 ...