题目


分析

如果计算出边的期望经过次数那就可以算出来答案

首先转换成点的期望经过次数,设\(dp[x]\)表示点\(x\)的期望经过次数

那么\(dp[x]=\sum_{y\in son}\frac{dp[y]}{deg[x]}+(x==1)(1\leq x<n)\)

可以用高斯消元解决,那么边的期望经过次数就是\(\frac{dp[u]}{deg[u]}+\frac{dp[v]}{deg[v]}\)

将其排个序就可以确定边的编号了


代码

#include <cstdio>
#include <cctype>
#include <cmath>
#include <algorithm>
#define rr register
using namespace std;
const int N=511;
struct node{int y,next;}e[N*N];
double a[N][N],f[N*N],ans;
int n,m,k,deg[N],ls[N];
inline signed iut(){
rr int ans=0; rr char c=getchar();
while (!isdigit(c)) c=getchar();
while (isdigit(c)) ans=(ans<<3)+(ans<<1)+(c^48),c=getchar();
return ans;
}
inline void add(int x,int y){
e[++k]=(node){y,ls[x]},ls[x]=k,
e[++k]=(node){x,ls[y]},ls[y]=k;
}
inline void Gauss(int n){
for (rr int i=1;i<=n;++i){
rr int p=i;
for (rr int j=i+1;j<=n;++j)
if (fabs(a[j][i])>fabs(a[p][i])) p=j;
if (p!=i) for (rr int j=1;j<=n+1;++j) swap(a[i][j],a[p][j]);
for (rr int j=1;j<=n;++j)
if (i!=j){
rr double elim=a[j][i]/a[i][i];
for (rr int k=i;k<=n+1;++k)
a[j][k]-=elim*a[i][k];
}
}
}
signed main(){
n=iut(),m=iut(),k=1;
for (rr int i=1,x,y;i<=m;++i)
++deg[x=iut()],++deg[y=iut()],add(x,y);
for (rr int i=1;i<n;++i){
a[i][i]=1.0;
for (rr int j=ls[i];j;j=e[j].next)
if (e[j].y!=n) a[i][e[j].y]=-1.0/deg[e[j].y];
}
a[1][n]=1,Gauss(n-1);
for (rr int i=1;i<n;++i)
for (rr int j=ls[i];j;j=e[j].next)
if (e[j].y!=n) f[j>>1]+=a[e[j].y][n]/a[e[j].y][e[j].y]*(1.0/deg[e[j].y]);
else f[j>>1]+=a[i][n]/a[i][i]*(1.0/deg[i]);
sort(f+1,f+1+m);
for (rr int i=1;i<=m;++i) ans+=((m-i+1)*1.0)*f[i];
return !printf("%.3f\n",ans);
}

#数学期望,高斯消元#洛谷 3232 [HNOI2013]游走的更多相关文章

  1. 洛谷P3232 [HNOI2013]游走(高斯消元+期望)

    传送门 所以说我讨厌数学……期望不会高斯消元也不会……好不容易抄好了高斯消元板子被精度卡成琪露诺了…… 首先,我们先算出走每一条边的期望次数,那么为了最小化期望,就让大的期望次数乘上小编号 边的期望次 ...

  2. UVa 10828 Back to Kernighan-Ritchie (数学期望 + 高斯消元)

    题意:给定一个 n 个结点的有向图,然后从 1 结点出发,从每个结点向每个后继结点的概率是相同的,当走到一个没有后继结点后,那么程序终止,然后问你经过每个结点的期望是次数是多少. 析:假设 i 结点的 ...

  3. P4321-随机漫游【状压dp,数学期望,高斯消元】

    正题 题目链接:https://www.luogu.com.cn/problem/P4321 题目大意 给出\(n\)个点\(m\)条边的一张无向图,\(q\)次询问. 每次询问给出一个点集和一个起点 ...

  4. 洛谷P3232[HNOI2013]游走

    有一个无向简单连通图,顶点从 \(1\) 编号到 \(n\),边从 \(1\) 编号到 \(m\) 小Z在该图上进行随机游走,初始时小Z在\(1\)号顶点,每一步小Z以相等的概率随机选 择当前顶点的某 ...

  5. [bzoj3143] [洛谷P3232] [HNOI2013] 游走

    Description 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点, ...

  6. 洛谷 P3232 [HNOI2013]游走

    链接: P3232 题意: 和上次考试 T4 的简化且无修改一样,经典图上高斯消元求期望. 分析: 要求出每个点的期望出发次数 \(f_i\),每个点度数为 \(d_i\),有 \[f1=\sum\d ...

  7. BZOJ 3143 游走 | 数学期望 高斯消元

    啊 我永远喜欢期望题 BZOJ 3143 游走 题意 有一个n个点m条边的无向联通图,每条边按1~m编号,从1号点出发,每次随机选择与当前点相连的一条边,走到这条边的另一个端点,一旦走到n号节点就停下 ...

  8. 【BZOJ】3143: [Hnoi2013]游走 期望+高斯消元

    [题意]给定n个点m条边的无向连通图,每条路径的代价是其编号大小,每个点等概率往周围走,要求给所有边编号,使得从1到n的期望总分最小(求该总分).n<=500. [算法]期望+高斯消元 [题解] ...

  9. 【BZOJ】2337: [HNOI2011]XOR和路径 期望+高斯消元

    [题意]给定n个点m条边的带边权无向连通图(有重边和自环),在每个点随机向周围走一步,求1到n的期望路径异或值.n<=100,wi<=10^9. [算法]期望+高斯消元 [题解]首先异或不 ...

  10. [BZOJ3143][HNOI2013]游走(期望+高斯消元)

    3143: [Hnoi2013]游走 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 3576  Solved: 1608[Submit][Status ...

随机推荐

  1. Vue3学习(十八) - TreeSelect 树选择

    写在前面 本以为可以在家学习一天,结果家里来了客人拜年,就没学习上,有点小遗憾吧. 昨天完成从分类管理的前后端代码复制出文档管理的前后端代码,遗留问题是只能选择一级父分类.值得说的是,昨晚的遗留的问题 ...

  2. Springboot集成Disruptor做内部消息队列

    一.基本介绍 Disruptor的github主页:https://github.com/LMAX-Exchange/disruptor 1,什么是 Disruptor? (1)Disruptor 是 ...

  3. 文心一言 VS 讯飞星火 VS chatgpt (202)-- 算法导论15.3 1题

    一.对于矩阵链乘法问题,下面两种确定最优代价的方法哪种更高效?第一种方法是穷举所有可能的括号化方案,对每种方案计算乘法运算次数,第二种方法是运行RECURSIVE-MATRIX-CHAIN.证明你的结 ...

  4. 硬件开发笔记(十二):RK3568底板电路电源模块和RTC模块原理图分析

    前言   做硬件做系统做驱动,很难从核心板做起,所以我们先依赖核心板,分析底板周围的电路,然后使用AD绘制原理图和设计PCB,打样我司测试底板,完成硬件测试,再继续系统适配,驱动移植,从而一步一步完善 ...

  5. 【Azure 应用服务】使用Docker Compose创建App Service遇见"Linux Version is too long. It cannot be more than 4000 characters"错误

    问题描述 使用Docker Compose方式合并多个镜像(Images)文件,然后部署到App Service中,结果失败.报错 Linux Version 太长,不能超过4000个字符. 错误消息 ...

  6. 【Azure 应用服务】App Services 恶意软件防护相关

    问题描述 App Services 恶意软件防护相关资料,App Service是否默认开启病毒防护呢? 问题解答 App Services 默认启用了Antimalware 软件功能,Microso ...

  7. 【Azure Developer】Python代码获取的Token出现'Authentication_MissingOrMalformed'问题

    问题描述 Python 调用Azure AD中所注册的应用生成Token代码: import requests, json client_id = 'yourclientid' client_secr ...

  8. CSP 2023 My Codes

    T1 小苹果 题目描述 小 Y 的桌子上放着 \(n\) 个苹果从左到右排成一列,编号为从 \(1\) 到 \(n\). 小苞是小 Y 的好朋友,每天她都会从中拿走一些苹果. 每天在拿的时候,小苞都是 ...

  9. Nacos服务跨分组调用

    一. 问题背景 nacos有两种服务隔离的机制,一个是空间namespace,一般我们用namespace区分环境,另外一个是分组group,nacos的默认调用机制是同namespace下的同gro ...

  10. 添加 alt + d 打开 dicts.cn 网址

    代码 autohotkey 代码 限制在双核浏览器 内部使用 #IfWinActive ahk_exe ChromeCore.exe !d:: Run, http://www.dicts.cn/ Re ...