代码原地址:

https://www.mindspore.cn/tutorial/zh-CN/r1.2/model.html

建立神经网络:

import mindspore.nn as nn

class LeNet5(nn.Cell):
"""
Lenet网络结构
"""
def __init__(self, num_class=10, num_channel=1):
super(LeNet5, self).__init__()
# 定义所需要的运算
self.conv1 = nn.Conv2d(num_channel, 6, 5, pad_mode='valid')
self.conv2 = nn.Conv2d(6, 16, 5, pad_mode='valid')
self.fc1 = nn.Dense(16 * 5 * 5, 120)
self.fc2 = nn.Dense(120, 84)
self.fc3 = nn.Dense(84, num_class)
self.relu = nn.ReLU()
self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2)
self.flatten = nn.Flatten() def construct(self, x):
# 使用定义好的运算构建前向网络
x = self.conv1(x)
x = self.relu(x)
x = self.max_pool2d(x)
x = self.conv2(x)
x = self.relu(x)
x = self.max_pool2d(x)
x = self.flatten(x)
x = self.fc1(x)
x = self.relu(x)
x = self.fc2(x)
x = self.relu(x)
x = self.fc3(x)
return x model = LeNet5() for m in model.parameters_and_names():
print(m)

import mindspore
from mindspore import Tensor
import mindspore.nn as nn import numpy as np conv2d = nn.Conv2d(1, 6, 5, has_bias=False, weight_init='normal', pad_mode='valid')
input_x = Tensor(np.ones([1, 1, 32, 32]), mindspore.float32) print(conv2d(input_x).shape)

import mindspore
from mindspore import Tensor
import mindspore.nn as nn import numpy as np relu = nn.ReLU()
input_x = Tensor(np.array([-1, 2, -3, 2, -1]), mindspore.float16)
output = relu(input_x) print(output)

import mindspore
from mindspore import Tensor
import mindspore.nn as nn import numpy as np max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2)
input_x = Tensor(np.ones([1, 6, 28, 28]), mindspore.float32) print(max_pool2d(input_x).shape)

import mindspore
from mindspore import Tensor
import mindspore.nn as nn import numpy as np flatten = nn.Flatten()
input_x = Tensor(np.ones([1, 16, 5, 5]), mindspore.float32)
output = flatten(input_x) print(output.shape)

import mindspore
from mindspore import Tensor
import mindspore.nn as nn import numpy as np dense = nn.Dense(400, 120, weight_init='normal')
input_x = Tensor(np.ones([1, 400]), mindspore.float32)
output = dense(input_x) print(output.shape)

MindSpore 建立神经网络的更多相关文章

  1. MindSpore循环神经网络

    MindSpore循环神经网络 一. 神经网络的组成 神经元模型:首先简单的了解以下构成神经网络的最基础单元:神经元.每个神经元与其它神经元相连,处于激活状态时,就会向相连的神经元发送相应信号.从而改 ...

  2. 几个小实践带你快速上手MindSpore

    摘要:本文将带大家通过几个小实践快速上手MindSpore,其中包括MindSpore端边云统一格式及华为智慧终端背后的黑科技. MindSpore介绍 MindSpore是一种适用于端边云场景的新型 ...

  3. MindSpore:自动微分

    MindSpore:自动微分 作为一款「全场景 AI 框架」,MindSpore 是人工智能解决方案的重要组成部分,与 TensorFlow.PyTorch.PaddlePaddle 等流行深度学习框 ...

  4. 使用神经网络来识别手写数字【译】(三)- 用Python代码实现

    实现我们分类数字的网络 好,让我们使用随机梯度下降和 MNIST训练数据来写一个程序来学习怎样识别手写数字. 我们用Python (2.7) 来实现.只有 74 行代码!我们需要的第一个东西是 MNI ...

  5. 利用LM神经网络和决策树去分类

    # -*- coding: utf-8 -*- import pandas as pd from scipy.interpolate import lagrange from matplotlib i ...

  6. 【转】pybrain的使用——一个开源的python神经网络工具包

    原文地址   http://lavimo.blog.163.com/blog/static/2149411532013911115316263/ 昨天的主要活动内容是找一个神经网络的包....= =这 ...

  7. tensorflow卷积神经网络-【老鱼学tensorflow】

    前面我们曾有篇文章中提到过关于用tensorflow训练手写2828像素点的数字的识别,在那篇文章中我们把手写数字图像直接碾压成了一个784列的数据进行识别,但实际上,这个图像是2828长宽结构的,我 ...

  8. tensorflow建造神经网络-【老鱼学tensorflow】

    上次我们添加了一个add_layer函数,这次就要创建一个神经网络来预测/拟合相应的数据. 下面我们先来创建一下虚拟的数据,这个数据为二次曲线数据,但同时增加了一些噪点,其图像为: 相应的创建这些伪造 ...

  9. 使用HOG特征+BP神经网络进行车标识别

    先挖个坑,快期末考试了,有空填上w 好了,今晚刚好有点闲,就把坑填上吧. //-------------------------------开篇---------------------------- ...

  10. Deep Learning.ai学习笔记_第一门课_神经网络和深度学习

    目录 前言 第一周(深度学习引言) 第二周(神经网络的编程基础) 第三周(浅层神经网络) 第四周(深层神经网络) 前言 目标: 掌握神经网络的基本概念, 学习如何建立神经网络(包含一个深度神经网络), ...

随机推荐

  1. redis自动化安装

    1.ruby脚本自动化安装 1.安装ruby开发环境 yum install rubygems -y 2.通过ruby包管理工具,安装操作redis的模块 gem sources --remove h ...

  2. mysql时间字段新增和修改默认时间,删除字段

    mysql时间字段新增和修改默认时间,删除字段##新增字段ALTER TABLE tbl_test ADD COLUMN `create_time` DATETIME NULL DEFAULT CUR ...

  3. unity持久化数据之XML和Excel

    unity持久化数据之XML public class XMLDataMananger: Singleton<XMLDataMananger> { protected XMLDataMan ...

  4. Python优雅遍历字典删除元素的方法

    在Python中,直接遍历字典并在遍历过程中删除元素可能会导致运行时错误,因为字典在迭代时并不支持修改其大小.但是,我们可以通过一些方法间接地达到这个目的. 1.方法一:字典推导式创建新字典(推荐) ...

  5. java并发和排序的简单例子(Runnable+TreeSet)

    很多时候并发需要考虑线程安全,但也有很多时候和线程安全毛关系都没有,因为并发最大的作用是并行,线程安全仅仅是并发的一个子话题. 例如常常会用于并发运算,并发i/o. 下文是一个练习笔记. 运行环境:w ...

  6. 13-nginx

    关于nginx nginx是提供http服务的中间件. 这里推荐学习nginx的博客:朱双印的博客 安装 nginx的版本 主线版本(Mainline version) #最新版,不稳定 稳定版本(S ...

  7. 基于防火墙的SSLVPN

    SCVPN即SSLVPN 拓补图 记得打开策略! 设置外接口(一些管理方式要打开) 设置SSL 地址池(如没要求设iP,随意设) 建立SSL VPN 出接口,地址池要选对 创建一个本地用户(账号A 密 ...

  8. 【深度学习 有效炼丹】多GPU使用教程, DP与DDP对比, ray多线程并行处理等 [GPU利用率低的分析]

    ️ 前言 更新日志: 20220404:新增一个DDP 加载模型时显存分布不均问题,见目录遇到的问题及解决处 主要是上次server12 被自己一个train 直接线程全部拉满了(没错 ... ser ...

  9. 使用sqlcel导入数据时出现“a column named '***' already belongs to this datatable”问题的解决办法

    我修改编码为GBK之后,选择导入部分字段,如下: 这样就不会出现之前的问题了,完美 ----------------------------------------------- 但是出现一个问题,我 ...

  10. VulnHub-DC-7渗透流程

    DC-7 kali:192.168.157.131 靶机:192.168.157.151 信息收集 nmap -sV -A -p- 192.168.157.151 虽然有robots.txt等敏感文件 ...