漏斗图,形如“漏斗”,用于展示数据的逐渐减少或过滤过程。
它的起始总是最大,并在各个环节依次减少,每个环节用一个梯形来表示,整体形如漏斗。
一般来说,所有梯形的高度应是一致的,这会有助人们辨别数值间的差异。

需要注意的是,漏斗图的各个环节,有逻辑上的顺序关系。
同时,漏斗图的所有环节的流量都应该使用同一个度量。

通过漏斗图,可以较直观的看出流程中各部分的占比、发现流程中的问题,进而做出决策。

1. 主要元素

漏斗图的主要元素包括:

  1. 分类:漏斗图中的不同层级或步骤。每个分类代表一个特定的过程、筛选或转化。
  2. 倒梯形:表示在每个阶段中的数据数量或数量的百分比。通常,随着阶段的推进,数据量会逐渐减少。
  3. 数据流:表示数据在不同阶段之间的流动路径。它显示了数据从一个阶段到另一个阶段的转移和过滤过程。
  4. 转化率:表示在每个阶段中数据的转化率或转化的百分比。它反映了数据在不同阶段之间的损失或过滤程度。

2. 适用的场景

漏斗图适用的分析场景包括:

  • 销售转化分析:跟踪销售过程中的潜在客户数量,并展示他们在不同阶段的转化率,从而帮助分析销售流程中的瓶颈和改进机会。
  • 市场营销分析:展示市场活动中的潜在客户数量,并显示他们在不同营销阶段的转化率,从而评估市场策略的有效性和改进方向。
  • 用户体验分析:追踪用户在产品或服务使用过程中的转化率,帮助分析用户体验中的瓶颈和提升点,从而优化产品或服务设计。
  • 网站流量分析:展示网站访问者在不同页面或功能模块之间的转化率,帮助分析用户行为和改进网站设计。

3. 不适用的场景

然而,漏斗图并不适用于所有分析场景。以下是一些不适合使用漏斗图的情况:

  • 数据无序或重复:如果数据没有明确的阶段或无法按照特定的流程进行过滤或转化,漏斗图可能不适用。
  • 数据缺失或不完整:如果数据在不同阶段之间存在缺失或不完整,漏斗图可能无法准确反映数据流动和转化情况。
  • 多个并行路径:如果数据在不同阶段之间存在多个并行路径,并且无法简单地表示为单一的线性流程,漏斗图可能无法有效展示数据流动。

4. 分析实战

本次用漏斗图分析各个学历的毕业生人数,从小学学历到博士学历。

4.1. 数据来源

数据来源国家统计局公开的数据,整理好的数据可从下面的地址下载:
https://databook.top/nation/A0M

使用其中的文件:A0M0203.csv(各级各类学历教育毕业生数)

fp = "d:/share/data/A0M0203.csv"

df = pd.read_csv(fp)
df

4.2. 数据清理

漏斗图不需要时间序列数据,所以,只提取2021年的数据中从小学到博士的6种学历的毕业生人数。

data = df[df["sj"] == 2021]

#A0M020312: 普通小学毕业生数(万人)
#A0M02030T: 初中阶段教育毕业生数(万人)
#A0M02030J: 普通高中毕业生数(万人)
#A0M020306: 普通本科毕业生数(万人)
#A0M020304: 硕士毕业生数(万人)
#A0M020303: 博士毕业生数(万人)
data = data[
data["zb"].isin(
[
"A0M020312",
"A0M02030T",
"A0M02030J",
"A0M020306",
"A0M020304",
"A0M020303",
]
)
] data = data.sort_values("value", ascending=False)
data

4.3. 分析结果可视化

with plt.style.context("dark_background"):
fig = plt.figure()
ax = fig.add_axes([0.1, 0.1, 1, 1]) colors = plt.cm.Set2.colors
cnt = len(data) y = [[1 + i * 3, 3.8 + i * 3] for i in range(cnt)]
y_ticks = [2 + i * 3 for i in range(cnt)] start_x1 = 5
start_x2 = -5
for i in range(cnt):
ax.fill_betweenx(
y=y[i],
x1=[start_x1, data.iloc[i, 4]],
x2=[start_x2, -1 * data.iloc[i, 4]],
color=colors[i],
)
start_x1 = data.iloc[i, 4]
start_x2 = -1 * data.iloc[i, 4] ax.set_xticks([], [])
ax.set_yticks(y_ticks, data["zbCN"]) for y, value in zip(y_ticks, data["value"]):
ax.text(
10,
y,
value,
fontsize=16,
fontweight="bold",
color="white",
ha="center",
) ax.grid(False)
ax.set_title("2021年各学历毕业人数")

从图中可以看出,完成9年义务教育的比例很高。
初中到高中,人数几乎减半,而本科考研,硕士考博的人数比例更是锐减

【matplotlib 实战】--漏斗图的更多相关文章

  1. python中matplotlib画折线图实例(坐标轴数字、字符串混搭及标题中文显示)

    最近在用python中的matplotlib画折线图,遇到了坐标轴 "数字+刻度" 混合显示.标题中文显示.批量处理等诸多问题.通过学习解决了,来记录下.如有错误或不足之处,望请指 ...

  2. 【Highcharts】 绘制饼图和漏斗图

    1.outModel类设计 设计outModel类首先研究下Highcharts中series的data数据格式,发现饼图和漏斗图都可以使用这样格式的数据 series: [{ name: 'Uniq ...

  3. arcpy.mapping实战-专题图制图自动化

    arcpy.mapping实战-专题图制图自动化 by 李远祥 最初对arcpy.mapping感兴趣是因为一次大规模的专题地图调整的需要,由于某某单位利用ArcEngine编写的专题图出图系统,出现 ...

  4. Matplotlib学习---用matplotlib画雷达图(radar chart)

    雷达图常用于对多项指标的全面分析.例如:HR想要比较两个应聘者的综合素质,用雷达图分别画出来,就可以进行直观的比较. 用Matplotlib画雷达图需要使用极坐标体系,可点击此链接,查看对极坐标体系的 ...

  5. python使用matplotlib绘制折线图教程

    Matplotlib是一个Python工具箱,用于科学计算的数据可视化.借助它,Python可以绘制如Matlab和Octave多种多样的数据图形.下面这篇文章主要介绍了python使用matplot ...

  6. [实战] SSH 图形化转发

    [实战] SSH 图形化转发 一.介绍 Unix Like操作系统不是只能进行服务器的架设而已,在美编.排版.制图.多媒体应用上也是有其需要的.这些需求都需要用到图形介面(Graphical User ...

  7. ECharts学习总结(二)-----图表组件漏斗图(funnel)

    今天在学习ECharts时,想要在ECharts图表的原生态Demo中抠出漏斗图,却不知如何下手,经过一番研究,特总结如下: 首先我们需要这样做 1.拷贝出两个js文件:esl.js 和echarts ...

  8. python matplotlib imshow热图坐标替换/映射

    今天遇到了这样一个问题,使用matplotlib绘制热图数组中横纵坐标自然是图片的像素排列顺序, 但是这样带来的问题就是画出来的x,y轴中坐标点的数据任然是x,y在数组中的下标, 实际中我们可能期望坐 ...

  9. 小白学Python(9)——pyecharts 绘制漏斗图 Funnel

    根据pyecharts的介绍一直没有研究明白def和return的用法,无法显示完整的漏斗图,还请各位指点. 根据上文绘制bar的方法,我更改了代码,做出了漏斗图,不过和demo不一样,而且数据也会随 ...

  10. Python pyecharts绘制漏斗图

    一.pyecharts绘制漏斗图方法简介 funnel.add()方法简介add(name, attr, value, funnel_sort="ascending", funne ...

随机推荐

  1. Task Execution and Scheduling In SpringBoot

    开天辟地 Task Execution and Scheduling In the absence of an Executor bean in the context, Spring Boot au ...

  2. 最简单的人脸检测(免费调用百度AI开放平台接口)

    远程调用百度AI开放平台的web服务,快速完成人脸识别 欢迎访问我的GitHub 这里分类和汇总了欣宸的全部原创(含配套源码):https://github.com/zq2599/blog_demos ...

  3. 【调制解调】PM 调相

    说明 学习数字信号处理算法时整理的学习笔记.同系列文章目录可见 <DSP 学习之路>目录,代码已上传到 Github - ModulationAndDemodulation.本篇介绍 PM ...

  4. 轻松理解Java中的public、private、static和final

    一.概念 1.public和private 两个都是访问权限修饰符,用于控制外界对类内部成员的访问. public:表明对象成员是完全共有的,外界可以随意访问.用public修饰的数据成员.成员函数是 ...

  5. python(django启动报错,之编码问题)UnicodeDecodeError: 'utf-8' codec can't decode byte 0xb2 in position 0: invalid start byte

  6. 与AI对话 -- 20230215 -- linux 启动参数与控制台

    linux 启动参数 console=ttyS0,115200n8 console=tty0 说明 console=ttyS0,115200n8:指定系统使用 ttyS0(ttyS1.ttyS2 以此 ...

  7. 2023-07-29:给你一个由数字组成的字符串 s,返回 s 中独特子字符串数量。 其中的每一个数字出现的频率都相同。

    2023-07-29:给你一个由数字组成的字符串 s,返回 s 中独特子字符串数量. 其中的每一个数字出现的频率都相同. 答案2023-07-29: 大体步骤如下: 1.初始化变量base为固定值10 ...

  8. 图像阈值_有cv2.threshold,cv2.adaptiveThreshold 等。

    1.简单阈值 使用的函数:cv2.threshold (src, thresh, maxval, type) 注释: 与名字一样,这种方法非常简单.但像素值高于阈值时,我们给这个像素赋予一个新值(可能 ...

  9. 如何破解wifi密码?

    前期准备: kali 系统 外置无线网卡 破解过程: 首先,需要登录kali系统,可以是虚拟机. 在虚拟机中设置点击 虚拟机-可移动设备-无线网卡的名称,将无线网卡绑定到kali虚拟机上. 在kali ...

  10. Stable Diffusion基础:ControlNet之人体姿势控制

    在AI绘画中精确控制图片是一件比较困难的事情,不过随着 ControlNet 的诞生,这一问题得到了很大的缓解. 今天我就给大家分享一个使用Stable Diffusion WebUI + OpenP ...