[USACO1.5] 八皇后 Checker Challenge 题解
[USACO1.5] 八皇后 Checker Challenge
题目描述
一个如下的 \(6 \times 6\) 的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行、每列有且只有一个,每条对角线(包括两条主对角线的所有平行线)上至多有一个棋子。
上面的布局可以用序列 \(2\ 4\ 6\ 1\ 3\ 5\) 来描述,第 \(i\) 个数字表示在第 \(i\) 行的相应位置有一个棋子,如下:
行号 \(1\ 2\ 3\ 4\ 5\ 6\)
列号 \(2\ 4\ 6\ 1\ 3\ 5\)
这只是棋子放置的一个解。请编一个程序找出所有棋子放置的解。
并把它们以上面的序列方法输出,解按字典顺序排列。
请输出前 \(3\) 个解。最后一行是解的总个数。
输入格式
一行一个正整数 \(n\),表示棋盘是 \(n \times n\) 大小的。
输出格式
前三行为前三个解,每个解的两个数字之间用一个空格隔开。第四行只有一个数字,表示解的总数。
样例 #1
样例输入 #1
6
样例输出 #1
2 4 6 1 3 5
3 6 2 5 1 4
4 1 5 2 6 3
4
提示
【数据范围】
对于 \(100\%\) 的数据,\(6 \le n \le 13\)。
题目翻译来自NOCOW。
USACO Training Section 1.5
(一)读懂题目
(Who) 关键词
6×6棋盘
六个棋子
每行、每列
每条对角线
只有一个
(What) 关键词之间关键联系:
满足每行每列每个对角线只有一个棋子的棋局就是一种解法
(How) 思路:
(1)
分析:第一反应使用深度优先搜索去做,枚举每一行,对本次摆放的棋子的每一列和每一个对角线都标上记号
(2)
分析:我们可以运用标记数组,bool类型来进行标记
(3)
分析:重要的是对角线的标记问题,但经过观察可以发现,对角线不是i+j相等就是i-j+8相等,所以可以利用这个特性来进行标记
(二)分析时间+空间复杂度
时间复杂度:O(n)
空间复杂度:O(n)
(三)代码实现
#include<iostream>
#include<cstdio>
using namespace std;
int ans,n;//ans是用来记录输出次数,题目只要求输出3次
int a[15];//每一行
bool b[15],c[40],d[40];//标记数组,b数组标记那一列,c和d数组标记对角线
void print()//打印函数
{
for(int j=1;j<=n;j++)
{
printf("%d ",a[j]);
}
puts("");
return;
}
void dfs(int i)//重点:深搜dfs
{
if(i>n)//如果一种情况成立(i已经遍历完每一列所有位置)
{
ans++;//记录+1
if(ans<=3)//如果<=3才输出,否则就是+1而已
{
print();
}
return;
}
for(int j=1;j<=n;j++)//枚举每一列
{
if(!b[j]&&!c[i+j]&&!d[i-j+n])//如果这个点没有被其他皇后给攻击到
{
//标记ing ……
b[j]=true;
c[i+j]=true;
d[i-j+n]=true;
a[i]=j;
dfs(i+1);//继续深搜
//取消标记,回溯ing……
b[j]=false;
c[i+j]=false;
d[i-j+n]=false;
}
}
return;
}
int main(){
scanf("%d",&n);
dfs(1);//记得从1开始
printf("%d\n",ans);
return 0;
}
(四)总结反思
本题就是著名的八皇后问题,最初由国际西洋棋棋手马克斯·贝瑟尔于1848年提出的问题,是回溯算法的典型案例。
然后就是被许多人又改成了许多版本(N皇后、K皇后、皇后游戏、还是N皇后)……
呃,正事——
本题考察的是我们对与搜索的掌握,但对于本题而言,深搜dfs的回溯还是更适合枚举方案的
所以最后也是运用了dfs进行作答
AC~
[USACO1.5] 八皇后 Checker Challenge 题解的更多相关文章
- P1219 [USACO1.5]八皇后 Checker Challenge
好长时间没登博客园了,今天想起了账号密码,遂发一篇题解 最近因为复赛正在复健搜索,所以做了这道题 这道题说难并不是很难,但是在于这个题需要找到两个规律 以下是原题 [USACO1.5]八皇后 Chec ...
- USACO1.5 Checker Challenge(类n皇后问题)
B - B Time Limit:1000MS Memory Limit:16000KB 64bit IO Format:%lld & %llu Description E ...
- 『嗨威说』算法设计与分析 - 回溯法思想小结(USACO-cha1-sec1.5 Checker Challenge 八皇后升级版)
本文索引目录: 一.回溯算法的基本思想以及个人理解 二.“子集和”问题的解空间结构和约束函数 三.一道经典回溯法题点拨升华回溯法思想 四.结对编程情况 一.回溯算法的基本思想以及个人理解: 1.1 基 ...
- USACO 1.5.4 Checker Challenge跳棋的挑战(回溯法求解N皇后问题+八皇后问题说明)
Description 检查一个如下的6 x 6的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行,每列,每条对角线(包括两条主对角线的所有对角线)上都至多有一个棋子. 列号 0 1 2 3 4 5 6 ...
- TZOJ 3522 Checker Challenge(深搜)
描述 Examine the 6x6 checkerboard below and note that the six checkers are arranged on the board so th ...
- USACO 6.5 Checker Challenge
Checker Challenge Examine the 6x6 checkerboard below and note that the six checkers are arranged on ...
- [OpenJudge] 百练2754 八皇后
八皇后 Description 会下国际象棋的人都很清楚:皇后可以在横.竖.斜线上不限步数地吃掉其他棋子.如何将8个皇后放在棋盘上(有8 * 8个方格),使它们谁也不能被吃掉!这就是著名的八皇后问题. ...
- 【算法导论】八皇后问题的算法实现(C、MATLAB、Python版)
八皇后问题是一道经典的回溯问题.问题描述如下:皇后可以在横.竖.斜线上不限步数地吃掉其他棋子.如何将8个皇后放在棋盘上(有8*8个方格),使它们谁也不能被吃掉? 看到这个问题,最容易想 ...
- 洛谷 p1219 八皇后
刚参加完蓝桥杯 弱鸡错了好几道..回头一看确实不难 写起来还是挺慢的 于是开始了刷题的道路 蓝桥杯又名搜索杯 暴力杯...于是先从dfs刷起 八皇后是很经典的dfs问题 洛谷的这道题是这样的 上面的布 ...
- 【搜索】P1219 八皇后
题目描述 检查一个如下的6 x 6的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行.每列有且只有一个,每条对角线(包括两条主对角线的所有平行线)上至多有一个棋子. 上面的布局可以用序列2 4 6 1 3 ...
随机推荐
- 解决“网页源代码编码形式为utf-8,但爬虫代码设置为decode('utf-8')仍出现汉字乱码”的问题
为了用爬虫获取百度首页的源代码,检查了百度的源代码,显示编码格式为utf-8 但这样写代码,却失败了-.. (这里提示:不要直接复制百度的URL,应该是http,不是https!!!) # 获取百度首 ...
- Divide Interval 题解
背景 太逊了,调了三次才调出来,所以写篇题解寄念.LC好睿智 题意 给你两个数 \(a,b\),现在要从 \(a\) 跑到 \(b\),每次可以将当前的 \(a\) 拆分成 \(2^n\times m ...
- 自己在本地搭建 git 版本仓库服务器
请确保你安装了 git 的图形化工具和 git 软件 首先先创建一个目录作为你的项目工程目录,比如 e:/gitTest 其次右键 git init. 然后指定一个 git 服务器目录,例如:e:/g ...
- Diffutoon下载介绍:真人视频转动漫工具,轻松获得上千点赞
最近在刷短视频的时候,偶尔能看到一些真人转动漫风的作品,看起来给人一种新鲜感,流量都还不错,简简单单跳个舞,就能获得上千个点赞~ 那么,这种视频是怎么制作的? 本期给大家介绍一款AI转绘工具Diffu ...
- Python和RPA网页自动化-处理alert弹框
以百度为例,分别使用python和RPA自动化完成以下步骤:设置->搜索设置->保存设置->确定 1.python代码如下 注意:[已经记录下您的使用偏好]弹框是无法捕获网页源代码的 ...
- Python和RPA网页自动化-发送邮件
以163邮箱为例,分别使用Python和RPA网页自动化发送邮件到指定邮箱 其中2个方法都需要用到163邮箱授权码,开启IMAP/SMTP服务即可得到授权码(POP3/SMTP服务不用开启) 1.py ...
- 【MySQL】DB-Link 跨库访问
相关说明: https://blog.csdn.net/qq_48721706/article/details/124088963 DB-LINK以一个远程访问方式访问其他MYSQL实例 连接实例和被 ...
- 【Java】JDBC Part5.1 Hikari连接池补充
Hikari Connection Pool Hikari 连接池 HikariCP 官方文档 https://github.com/brettwooldridge/HikariCP Maven依赖 ...
- 【RabbitMQ】12 日志监控 & 消息追踪
一.日志和监控 RabbitMQ日志存放目录 [root@localhost ~]# ll /var/log/rabbitmq/ 总用量 176 -rw-r-----. 1 rabbitmq rabb ...
- 【Spring】09 后续的学习补充 vol3
原生JDBC事务: package dao; import cn.dzz.util.DruidUtil; import org.apache.commons.dbutils.QueryRunner; ...