(转) AI突破性论文及代码实现汇总
本文转自:https://zhuanlan.zhihu.com/p/25191377
AI突破性论文及代码实现汇总
What Can AI Do For You?
“The business plans of the next 10,000 startups are easy to forecast: Take X and add AI.” — Kevin Kelly
"A hundred years ago electricity transformed countless industries; 20 years ago the internet did, too. Artificial intelligence is about to do the same. To take advantage, companies need to understand what AI can do." — Andrew Ng
If you are a newcomer to the AI, the first question you may have is "What AI can do now and how it relates to my strategies?" Here are the breakthrough AI papers and CODE for any industry.
Deep Learning BOOKS
0.0 Deep Learning
[0] Bengio, Yoshua, Ian J. Goodfellow, and Aaron Courville. "Deep learning" An MIT Press book. (2016).
0.1 Deep Reinforcement Learning
[1] Richard S. Sutton and Andrew G. Barto. "Reinforcement Learning: An Introduction (2nd Edition)"
[2] Pieter Abbeel and John Schulman | Open AI / Berkeley AI Research Lab. "Deep Reinforcement Learning through Policy Optimization"
[3] Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W. Hoffman, David Pfau, Tom Schaul, Brendan Shillingford, Nando de Freitas. "Learning to learn by gradient descent by gradient descent"
CODE Learning to Learn in TensorFlow
arXiv Learning to Learn for Global Optimization of Black Box Functions
Deep Learning PAPERS
Papers Reading Roadmap
[0] "Deep Learning Papers Reading Roadmap"
CODE Download All Papers
1.1 Neural Information Processing Systems Conference - NIPS 2016
[1] Full Videos "NIPS 2016 : 57 Episodes"
[2] CODE "All Code Implementations for NIPS 2016 papers"
1.2 GitXiv : arXiv + Github + Links + Discussion
[3] arXiv + CODE "Implementations of Some of the Best arXiv Papers"
1.3 Wasserstein GAN
[4] arXiv "Wasserstein GAN"
[5] CODE "Code accompanying the paper "Wasserstein GAN""
1.4 The Predictron
[6] arXiv "The Predictron: End-To-End Learning and Planning"
[7] CODE "A TensorFlow implementation of "The Predictron: End-To-End Learning and Planning""
1.5 Meta-RL
[8] arXiv "Learning to reinforcement learn"
[9] CODE "Meta-RL""
1.6 Neural Architecture Search with RL
[10] arXiv "Neural Architecture Search with Reinforcement Learning"
1.7 Superior Generalizability and Interpretability
[11] arXiv "Making Neural Programming Architectures Generalize via Recursion"
1.8 Seq2seq RL GANs for Dialogue Generation
[12] arXiv "Adversarial Learning for Neural Dialogue Generation"
1.9 DeepMind’s PathNet: Modular Deep Learning Architecture for AGI
[13] arXiv "PathNet: Evolution Channels Gradient Descent in Super Neural Networks"
1.10 Outrageously Large Neural Networks
[14] arXiv "Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer"
Deep Learning TUTORIALS
2.0 Implementation of Reinforcement Learning Algorithms
2.1 Python Data Science Handbook
[1] CODE "Jupyter Notebooks for the Python Data Science Handbook" by Jake Vanderplas.
2.2 Learn How to Build State of the Art Models
[2] Video + CODE "Practical Deep Learning For Coders, Part 1" by Jeremy Howard.
2.3 NIPS 2016 Tutorial: Generative Adversarial Networks
[3] arXiv "NIPS 2016 Tutorial: Generative Adversarial Networks" by Ian Goodfellow.
2.4 Data Science IPython Notebooks
Deep Learning TOOLS
3.0 TensorFlow
TensorFlow is an Open Source Software Library for Machine Intelligence: https://www.tensorflow.org
[0] Mart ́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mane ́, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Vie ́gas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. "WhitePaper - TensorFlow: Large-scale machine learning on heterogeneous systems"
CODE Installation
CODE TensorFlow Tutorial and Examples for Beginners
CODE Models built with TensorFlow
3.1 OpenAI Gym
The OpenAI Gym is a toolkit for developing and comparing reinforcement learning algorithms OpenAI Gym: A toolkit for developing and comparing reinforcement learning algorithms
[1] Greg Brockman and Vicki Cheung and Ludwig Pettersson and Jonas Schneider and John Schulman and Jie Tang and Wojciech Zaremba. "OpenAI Gym WhitePaper"
CODE Installation of the gym open-source library
CODE How to create new environments
3.2 Universe
Universe: A software platform for measuring and training an AI's general intelligence across the world's supply of games, websites and other applications.Universe (blog).
CODE Installation
3.3 DyNet: The Dynamic Neural Network Toolkit
DyNet is a neural network library designed to be efficient when run on either CPU or GPU. DyNet has been used to build state-of-the-art systems for syntactic parsing, machine translation, morphological inflection.
[2] Graham Neubig, Chris Dyer, Yoav Goldberg, Austin Matthews, Waleed Ammar, Antonios Anastasopoulos, Miguel Ballesteros, David Chiang, Daniel Clothiaux, Trevor Cohn, Kevin Duh, Manaal Faruqui, Cynthia Gan, Dan Garrette, Yangfeng Ji, Lingpeng Kong, Adhiguna Kuncoro, Gaurav Kumar, Chaitanya Malaviya, Paul Michel, Yusuke Oda, Matthew Richardson, Naomi Saphra, Swabha Swayamdipta, Pengcheng Yin. "DyNet: The Dynamic Neural Network Toolkit"
CODE Installation
3.4 Edward: A Python library for Probabilistic Modeling, Inference and Criticism
DyNet is a neural network library designed to be efficient when run on either CPU or GPU. DyNet has been used to build state-of-the-art systems for syntactic parsing, machine translation, morphological inflection.
[2] Graham Neubig, Chris Dyer, Yoav Goldberg, Austin Matthews, Waleed Ammar, Antonios Anastasopoulos, Miguel Ballesteros, David Chiang, Daniel Clothiaux, Trevor Cohn, Kevin Duh, Manaal Faruqui, Cynthia Gan, Dan Garrette, Yangfeng Ji, Lingpeng Kong, Adhiguna Kuncoro, Gaurav Kumar, Chaitanya Malaviya, Paul Michel, Yusuke Oda, Matthew Richardson, Naomi Saphra, Swabha Swayamdipta, Pengcheng Yin. "DyNet: The Dynamic Neural Network Toolkit"
CODE Installation
3.5 DeepMind Lab: A customisable 3D platform for agent-based AI research
Edward is a Python library for probabilistic modeling, inference and criticism fusing three fields: Bayesian statistics and machine learning, deep learning, and probabilistic programming. Runs on TensorFlow.
[3] Dustin Tran, Matthew D. Hoffman, Rif A. Saurous, Eugene Brevdo, Kevin Murphy, David M. Blei. "Deep Probabilistic Programming"
CODE Installation
Others
4.0 Robotics:Deep Reinforcement Learning
[1]"Extending the OpenAI Gym for robotics"
CODE "Gym Gazebo"
4.1 Image Recognition:Very Deep Convolutional Networks
[2]"Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning"
CODE"Keras-InceptionV4n"
4.2 Full Resolution Image Compression:Recurrent Neural Networks
[3]"Full Resolution Image Compression with Recurrent Neural Networks"
CODE"Compression"
原文链接:ceobillionaire/WHAT-AI-CAN-DO-FOR-YOU
相关文章
PS.极视角高校计算机视觉算法邀请赛目前正在报名中,欢迎各高校在读学生报名参加,大奖+商业项目参与机会+数据库等你来拿!!!咨询报名请加小助手(微信号:Extreme-Vision)
(转) AI突破性论文及代码实现汇总的更多相关文章
- 10K+,深度学习论文、代码最全汇总!
我们大部分人是如何查询和搜集深度学习相关论文的?绝大多数情况是根据关键字在谷歌.百度搜索.想寻找相关论文的复现代码又会去 GitHub 上搜索关键词.浪费了很多时间不说,论文.代码通常也不够完整.怎么 ...
- [ZZ]计算机视觉、机器学习相关领域论文和源代码大集合
原文地址:[ZZ]计算机视觉.机器学习相关领域论文和源代码大集合作者:计算机视觉与模式 注:下面有project网站的大部分都有paper和相应的code.Code一般是C/C++或者Matlab代码 ...
- Context Encoder论文及代码解读
经过秋招和毕业论文的折磨,提交完论文終稿的那一刻总算觉得有多余的时间来搞自己的事情. 研究论文做的是图像修复相关,这里对基于深度学习的图像修复方面的论文和代码进行整理,也算是研究生方向有一个比较好的结 ...
- NLP-Progress记录NLP最新数据集、论文和代码: 助你紧跟NLP前沿
Github https://github.com/sebastianruder/NLP-progress 官方网址 https://nlpprogress.com/ NLP-Progress 同时涵 ...
- 让 AI 为你写代码 - 体验 Github Copilot
前几天在群里看到有大神分享 Copoilot AI 写代码,看了几个截图有点不敢相信自己的眼睛.今天赶紧自己也来体验一下 Copoilot AI 写代码到底有多神奇. 申请 现在 Copoilot 还 ...
- 前端项目 node8升级到node16,代码升级汇总
背景 公司的项目是vue项目,环境是node@8x版本的,最近我创建react hook的项目,发现至少需要node14才支持,打开官网才发现node都已经到16版本了.失策啊,失策.于是直接升级到最 ...
- StarGAN论文及代码理解
StarGAN的引入是为了解决多领域间的转换问题的,之前的CycleGAN等只能解决两个领域之间的转换,那么对于含有C个领域转换而言,需要学习C*(C-1)个模型,但StarGAN仅需要学习一个,而且 ...
- r-cnn学习(五):SmoothL1LossLayer论文与代码的结合理解
A Loss Function for Learning Region Proposals 训练RPN时,只对两种anchor给予正标签:和gt_box有着最高的IoU && IoU超 ...
- LATEX论文排版学习资源汇总
一.国内出版的LaTeX书籍 不管是ctex还是chinatex论坛,很多TeX前辈和使用者都给大家提供了很多咨询帮助,同时,也分享了很多很多学习上的方法与技巧.一般都推荐入门的用户先阅读一本入门书, ...
随机推荐
- Gitlab注册时报错:There was an error with the reCAPTCHA. Please solve the reCAPTCHA again.
今天注册时碰到以下问题: 上面的错误是因为注册时有一个google的验证码需要输入.但是中国无法访问google,因此无法访问并输入该验证码导致. 解决方案: FanQiang或者通过Github登陆 ...
- Hive 的排名和跨行 窗口函数及其使用
一.排序&去重分析 row_number() over(partititon by col1 order by col2) as rn 也可以用 row_number() over(distr ...
- vue使用tradingview开发K线图相关问题
vue使用tradingview开发K线图相关问题 1.TradingView中文开发文档https://b.aitrade.ga/books/tradingview/CHANGE-LOG.html2 ...
- spring 线程安全
http://www.cnblogs.com/doit8791/p/4093808.html 写的真的好
- js如何获取服务器端时间?
用js做时间校正,获取本机时间,是存在bug的. 使用js也可获取到服务器时间,原理是使用 ajax请求,返回的头部信息就含有服务器端的时间信息,获取到就可以了.以下: 1.依赖jQuery 代码: ...
- AtCoder Beginner Contest 083 (AB)
A - Libra 题目链接:https://abc083.contest.atcoder.jp/tasks/abc083_a Time limit : 2sec / Memory limit : 2 ...
- [转载]Javascript:history.go()和history.back()的用法和区别
Javascript:history.go()和history.back()的用法和区别 简单的说就是:go(-1): 返回上一页,原页面表单中的内容会丢失:back(): 返回上一页,原页表表单中的 ...
- Hadoop学习笔记之三:DataNode
DataNode对ClientDatanodeProtocol.InterDatanodeProtocol两个协议接口进行了实现,通过ipc::Server向Client.其它DN提供RPC服务(参见 ...
- 自写Jquery插件 Menu
原创文章,转载请注明出处,谢谢!https://www.cnblogs.com/GaoAnLee/p/9067543.html 可以结合我自写的Jquery插件Tab 一起使用哦 上一个整体效果 直接 ...
- c#md5加密的简单用法
using System.Security.Cryptography; //MD5 md5 = MD5.Create(); MD5 md5 = new MD5CryptoServiceProvider ...