本文转自:https://zhuanlan.zhihu.com/p/25191377

AI突破性论文及代码实现汇总

极视角 · 2 天前

What Can AI Do For You?

The business plans of the next 10,000 startups are easy to forecast: Take X and add AI.” — Kevin Kelly

"A hundred years ago electricity transformed countless industries; 20 years ago the internet did, too. Artificial intelligence is about to do the same. To take advantage, companies need to understand what AI can do." — Andrew Ng

If you are a newcomer to the AI, the first question you may have is "What AI can do now and how it relates to my strategies?" Here are the breakthrough AI papers and CODE for any industry.

Deep Learning BOOKS

  • 0.0 Deep Learning

[0] Bengio, Yoshua, Ian J. Goodfellow, and Aaron Courville. "Deep learning" An MIT Press book. (2016).

  • 0.1 Deep Reinforcement Learning

[1] Richard S. Sutton and Andrew G. Barto. "Reinforcement Learning: An Introduction (2nd Edition)"

[2] Pieter Abbeel and John Schulman | Open AI / Berkeley AI Research Lab. "Deep Reinforcement Learning through Policy Optimization"

[3] Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W. Hoffman, David Pfau, Tom Schaul, Brendan Shillingford, Nando de Freitas. "Learning to learn by gradient descent by gradient descent"

CODE Learning to Learn in TensorFlow

arXiv Learning to Learn for Global Optimization of Black Box Functions

Deep Learning PAPERS

  • Papers Reading Roadmap

[0] "Deep Learning Papers Reading Roadmap"

CODE Download All Papers

  • 1.1 Neural Information Processing Systems Conference - NIPS 2016

[1] Full Videos "NIPS 2016 : 57 Episodes"

[2] CODE "All Code Implementations for NIPS 2016 papers"

  • 1.2 GitXiv : arXiv + Github + Links + Discussion

[3] arXiv + CODE "Implementations of Some of the Best arXiv Papers"

  • 1.3 Wasserstein GAN

[4] arXiv "Wasserstein GAN"

[5] CODE "Code accompanying the paper "Wasserstein GAN""

  • 1.4 The Predictron

[6] arXiv "The Predictron: End-To-End Learning and Planning"

[7] CODE "A TensorFlow implementation of "The Predictron: End-To-End Learning and Planning""

  • 1.5 Meta-RL

[8] arXiv "Learning to reinforcement learn"

[9] CODE "Meta-RL""

  • 1.6 Neural Architecture Search with RL

[10] arXiv "Neural Architecture Search with Reinforcement Learning"

  • 1.7 Superior Generalizability and Interpretability

[11] arXiv "Making Neural Programming Architectures Generalize via Recursion"

  • 1.8 Seq2seq RL GANs for Dialogue Generation

[12] arXiv "Adversarial Learning for Neural Dialogue Generation"

  • 1.9 DeepMind’s PathNet: Modular Deep Learning Architecture for AGI

[13] arXiv "PathNet: Evolution Channels Gradient Descent in Super Neural Networks"

  • 1.10 Outrageously Large Neural Networks

[14] arXiv "Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer"

Deep Learning TUTORIALS

  • 2.0 Implementation of Reinforcement Learning Algorithms

[0] CODE "Implementation of Reinforcement Learning Algorithms. Python, OpenAI Gym, Tensorflow. Exercises and Solutions to accompany Sutton's Book and David Silver's course."

  • 2.1 Python Data Science Handbook

[1] CODE "Jupyter Notebooks for the Python Data Science Handbook" by Jake Vanderplas.

  • 2.2 Learn How to Build State of the Art Models

[2] Video + CODE "Practical Deep Learning For Coders, Part 1" by Jeremy Howard.

  • 2.3 NIPS 2016 Tutorial: Generative Adversarial Networks

[3] arXiv "NIPS 2016 Tutorial: Generative Adversarial Networks" by Ian Goodfellow.

  • 2.4 Data Science IPython Notebooks

[4] CODE "Data Science Python Notebooks: Deep learning (TensorFlow, Theano, Caffe), Scikit-learn, Kaggle, Big Data (Spark, Hadoop MapReduce, HDFS), Pandas, NumPy, SciPy..."

Deep Learning TOOLS

  • 3.0 TensorFlow

TensorFlow is an Open Source Software Library for Machine Intelligence: https://www.tensorflow.org

[0] Mart ́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mane ́, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Vie ́gas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. "WhitePaper - TensorFlow: Large-scale machine learning on heterogeneous systems"

CODE Installation

CODE TensorFlow Tutorial and Examples for Beginners

CODE Models built with TensorFlow

3.1 OpenAI Gym

The OpenAI Gym is a toolkit for developing and comparing reinforcement learning algorithms OpenAI Gym: A toolkit for developing and comparing reinforcement learning algorithms

[1] Greg Brockman and Vicki Cheung and Ludwig Pettersson and Jonas Schneider and John Schulman and Jie Tang and Wojciech Zaremba. "OpenAI Gym WhitePaper"

CODE Installation of the gym open-source library

CODE How to create new environments

  • 3.2 Universe

Universe: A software platform for measuring and training an AI's general intelligence across the world's supply of games, websites and other applications.Universe (blog).

CODE Installation

CODE Universe Starter Agent

  • 3.3 DyNet: The Dynamic Neural Network Toolkit

DyNet is a neural network library designed to be efficient when run on either CPU or GPU. DyNet has been used to build state-of-the-art systems for syntactic parsing, machine translation, morphological inflection.

[2] Graham Neubig, Chris Dyer, Yoav Goldberg, Austin Matthews, Waleed Ammar, Antonios Anastasopoulos, Miguel Ballesteros, David Chiang, Daniel Clothiaux, Trevor Cohn, Kevin Duh, Manaal Faruqui, Cynthia Gan, Dan Garrette, Yangfeng Ji, Lingpeng Kong, Adhiguna Kuncoro, Gaurav Kumar, Chaitanya Malaviya, Paul Michel, Yusuke Oda, Matthew Richardson, Naomi Saphra, Swabha Swayamdipta, Pengcheng Yin. "DyNet: The Dynamic Neural Network Toolkit"

CODE Installation

  • 3.4 Edward: A Python library for Probabilistic Modeling, Inference and Criticism

DyNet is a neural network library designed to be efficient when run on either CPU or GPU. DyNet has been used to build state-of-the-art systems for syntactic parsingmachine translationmorphological inflection.

[2] Graham Neubig, Chris Dyer, Yoav Goldberg, Austin Matthews, Waleed Ammar, Antonios Anastasopoulos, Miguel Ballesteros, David Chiang, Daniel Clothiaux, Trevor Cohn, Kevin Duh, Manaal Faruqui, Cynthia Gan, Dan Garrette, Yangfeng Ji, Lingpeng Kong, Adhiguna Kuncoro, Gaurav Kumar, Chaitanya Malaviya, Paul Michel, Yusuke Oda, Matthew Richardson, Naomi Saphra, Swabha Swayamdipta, Pengcheng Yin. "DyNet: The Dynamic Neural Network Toolkit"

CODE Installation

  • 3.5 DeepMind Lab: A customisable 3D platform for agent-based AI research

Edward is a Python library for probabilistic modeling, inference and criticism fusing three fields: Bayesian statistics and machine learning, deep learning, and probabilistic programming. Runs on TensorFlow.

[3] Dustin Tran, Matthew D. Hoffman, Rif A. Saurous, Eugene Brevdo, Kevin Murphy, David M. Blei. "Deep Probabilistic Programming"

CODE Installation

Others

  • 4.0 Robotics:Deep Reinforcement Learning

[1]"Extending the OpenAI Gym for robotics"

CODE "Gym Gazebo"

  • 4.1 Image Recognition:Very Deep Convolutional Networks

[2]"Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning"

CODE"Keras-InceptionV4n"

  • 4.2 Full Resolution Image Compression:Recurrent Neural Networks

[3]"Full Resolution Image Compression with Recurrent Neural Networks"

CODE"Compression"

原文链接:ceobillionaire/WHAT-AI-CAN-DO-FOR-YOU

相关文章

资料|NIPS 2016论文实现汇总

干货福利:CVPR2016代码合集

PS.极视角高校计算机视觉算法邀请赛目前正在报名中,欢迎各高校在读学生报名参加,大奖+商业项目参与机会+数据库等你来拿!!!咨询报名请加小助手(微信号:Extreme-Vision)

(转) AI突破性论文及代码实现汇总的更多相关文章

  1. 10K+,深度学习论文、代码最全汇总!

    我们大部分人是如何查询和搜集深度学习相关论文的?绝大多数情况是根据关键字在谷歌.百度搜索.想寻找相关论文的复现代码又会去 GitHub 上搜索关键词.浪费了很多时间不说,论文.代码通常也不够完整.怎么 ...

  2. [ZZ]计算机视觉、机器学习相关领域论文和源代码大集合

    原文地址:[ZZ]计算机视觉.机器学习相关领域论文和源代码大集合作者:计算机视觉与模式 注:下面有project网站的大部分都有paper和相应的code.Code一般是C/C++或者Matlab代码 ...

  3. Context Encoder论文及代码解读

    经过秋招和毕业论文的折磨,提交完论文終稿的那一刻总算觉得有多余的时间来搞自己的事情. 研究论文做的是图像修复相关,这里对基于深度学习的图像修复方面的论文和代码进行整理,也算是研究生方向有一个比较好的结 ...

  4. NLP-Progress记录NLP最新数据集、论文和代码: 助你紧跟NLP前沿

    Github https://github.com/sebastianruder/NLP-progress 官方网址 https://nlpprogress.com/ NLP-Progress 同时涵 ...

  5. 让 AI 为你写代码 - 体验 Github Copilot

    前几天在群里看到有大神分享 Copoilot AI 写代码,看了几个截图有点不敢相信自己的眼睛.今天赶紧自己也来体验一下 Copoilot AI 写代码到底有多神奇. 申请 现在 Copoilot 还 ...

  6. 前端项目 node8升级到node16,代码升级汇总

    背景 公司的项目是vue项目,环境是node@8x版本的,最近我创建react hook的项目,发现至少需要node14才支持,打开官网才发现node都已经到16版本了.失策啊,失策.于是直接升级到最 ...

  7. StarGAN论文及代码理解

    StarGAN的引入是为了解决多领域间的转换问题的,之前的CycleGAN等只能解决两个领域之间的转换,那么对于含有C个领域转换而言,需要学习C*(C-1)个模型,但StarGAN仅需要学习一个,而且 ...

  8. r-cnn学习(五):SmoothL1LossLayer论文与代码的结合理解

    A Loss Function for Learning Region Proposals 训练RPN时,只对两种anchor给予正标签:和gt_box有着最高的IoU && IoU超 ...

  9. LATEX论文排版学习资源汇总

    一.国内出版的LaTeX书籍 不管是ctex还是chinatex论坛,很多TeX前辈和使用者都给大家提供了很多咨询帮助,同时,也分享了很多很多学习上的方法与技巧.一般都推荐入门的用户先阅读一本入门书, ...

随机推荐

  1. html5-css背景

    div{    width: 300px;    height: 300px;    border:50px groove rgba(200,60,30,0.5);    /*background-c ...

  2. 20155228 实验一《Java开发环境的熟悉》实验报告

    20155228 实验一<Java开发环境的熟悉>实验报告 实验内容 使用JDK编译.运行简单的Java程序: 使用IDEA 编辑.编译.运行.调试Java程序. 实验要求 没有Linux ...

  3. 文件、文件夹操作(I)

    遍历一个目录下的所有文件 首先我们获取用户文档目录路径 let manager = FileManager.default let urlForDocument = manager.urls(for: ...

  4. MVC 中的Model对象

    最近实在是太忙,客户丢了一个框架,没有任何说明文档,更没有所谓的技术支持,一直忙于学习,最后好歹还有点头绪,话不多说,MVC的学习是不能拉下的,就当前小白的我,认为MVC中的M并不是想象中的那样简单, ...

  5. [转]Hive开发经验问答式总结

    本文转载自:http://www.crazyant.net/1625.html 本文是自己开发Hive经验的总结,希望对大家有所帮助,有问题请留言交流. Hive开发经验思维导图 Hive开发经验总结 ...

  6. 大数据权限管理工具 Apache Ranger 初识

    资料参考: Apache Ranger – Introduction http://ranger.apache.org/ 阿里云 Ranger简介 Apache Ranger初识 - 阿里云 大数据权 ...

  7. 初探AngularJs框架(二)

    一.创建Components组件 直接使用AngularCLI即可很方便的创建component组件,使用如下指令: ng g component components/news 这样就会在compo ...

  8. [转载]Oracle修改用户表所属表空间的步骤

    1 .修改表的空间alter table TABLE_NAME move tablespace TABLESPACENAME 查询当前用户下的所有表选择'alter table'|| table_na ...

  9. Eclipse在Debug模式下经常进入ThreadPoolExecutor解决办法

    1.进入Window-->搜索:debug

  10. bzoj 3083

    bzoj 3083 树链剖分,换根 对于一颗树有以下操作 1.确定x为根,2.将u到v的简单路径上的数全改成c,3.询问当前以x为根的子树中的节点最小权值. 如果没有操作1:树链剖分很明显. 于是考虑 ...