Description

有一棵点数为 N 的树,以点 1 为根,且树点有边权。然后有 M 个
操作,分为三种:
操作 1 :把某个节点 x 的点权增加 a 。
操作 2 :把某个节点 x 为根的子树中所有点的点权都增加 a 。
操作 3 :询问某个节点 x 到根的路径中所有点的点权和。

Input

第一行包含两个整数 N, M 。表示点数和操作数。接下来一行 N 个整数,表示树中节点的初始权值。接下来 N-1 
行每行三个正整数 fr, to , 表示该树中存在一条边 (fr, to) 。再接下来 M 行,每行分别表示一次操作。其中
第一个数表示该操作的种类( 1-3 ) ,之后接这个操作的参数( x 或者 x a ) 。
 

Output

对于每个询问操作,输出该询问的答案。答案之间用换行隔开。

 

Sample Input

5 5
1 2 3 4 5
1 2
1 4
2 3
2 5
3 3
1 2 1
3 5
2 1 2
3 3

Sample Output

6
9
13

HINT

对于 100% 的数据, N,M<=100000 ,且所有输入数据的绝对值都不会超过 10^6 。


题解:

首先看到操作三就能想到树链剖分吧?

再看看题面就能想到线段树维护吧?

然后就没难度了吧?

考虑一下每个操作的做法:

操作1:单点修改,直接在线段树上面修改就好

操作2:把以x为根的子树+a,这是唯一有难度的一个地方。那么想一想我们是怎么剖分这棵树的——两次dfs,也就是说我们的树是按dfs序来构建的,再想想dfs序,它有一个很有趣的性质:

一个子树的编号一定是连续的

证明可以自己去找找。网上有的。

那么当我们想到这个性质之后操作2就不难了,第一次dfs的时候我们已经维护出来一个siz数组表示该节点的子节点了,我们只需要对pos[x],pos[x]+siz[x]-1这个区间进行区间修改就可以了(pos数组是树上的节点在线段树中的编号)

操作3:树链剖分的基本操作,爬到同一条重链上然后区间修改就好了

Code:

#include <cstdio>
#include <cstring>
#define ll long long
#define inf 1<<30
#define il inline
il ll max(ll x,ll y){return x>y?x:y;}
il ll min(ll x,ll y){return x<y?x:y;}
il ll abs(ll x){return x>?x:-x;}
il void swap(ll &x,ll &y){ll t=x;x=y;y=t;}
il void read(ll &x){
x=;ll f=;char c=getchar();
while(c<''||c>''){if(c=='-')f=-f;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
x*=f;
}
il void print(ll x){if(x<)putchar('-');x=abs(x);if(x>)print(x/);putchar(x%+'');}
il void writeln(ll x){if(x<)putchar('-');x=abs(x);print(x);putchar('\n');}
il void write(ll x){if(x<)putchar('-');x=abs(x);print(x);putchar(' ');}
using namespace std;
/*===================Header Template=====================*/
#define N 100010
struct tree{ll l,r,sum,tag;}t[N<<];
struct data{ll to,next;}e[N<<];
ll n,m,root,pos[N],sz;
ll cnt,head[N],v[N],v1[N];
ll fa[N],siz[N],top[N],dep[N];
void insert(ll u,ll v){
e[++cnt].to=v;e[cnt].next=head[u];head[u]=cnt;
e[++cnt].to=u;e[cnt].next=head[v];head[v]=cnt;
}
void dfs1(ll x){
siz[x]=;
for(ll i=head[x];i;i=e[i].next){
if(e[i].to==fa[x])continue;
fa[e[i].to]=x;
dep[e[i].to]=dep[x]+;
dfs1(e[i].to);
siz[x]+=siz[e[i].to];
}
}
void dfs2(ll x,ll topf){
top[x]=topf;
pos[x]=++sz;
v1[sz]=v[x];
ll k=;
for(ll i=head[x];i;i=e[i].next){
if(dep[e[i].to]>dep[x]&&siz[e[i].to]>siz[k])k=e[i].to;
}
if(!k)return;
dfs2(k,topf);
for(ll i=head[x];i;i=e[i].next){
if(k!=e[i].to&&dep[e[i].to]>dep[x])dfs2(e[i].to,e[i].to);
}
}
void build(ll l,ll r,ll rt){
t[rt].l=l;t[rt].r=r;
ll mid=(l+r)>>;
if(l==r){return;}
build(l,mid,rt<<);
build(mid+,r,rt<<|);
t[rt].sum=t[rt<<].sum+t[rt<<|].sum;
}
void pushdown(ll ln,ll rn,ll rt){
if(t[rt].tag){
ll &x=t[rt].tag;
t[rt<<].tag+=x;
t[rt<<|].tag+=x;
t[rt<<].sum+=x*ln;
t[rt<<|].sum+=x*rn;
x=;
}
}
void upd1(ll L,ll c,ll rt){
ll l=t[rt].l,r=t[rt].r,mid=(l+r)>>;
if(l==r){t[rt].sum+=c;return;}
pushdown(mid-l+,r-mid,rt);
if(L<=mid)upd1(L,c,rt<<);
else upd1(L,c,rt<<|);
t[rt].sum=t[rt<<].sum+t[rt<<|].sum;
}
void upd2(ll L,ll R,ll c,ll rt){
ll l=t[rt].l,r=t[rt].r,mid=(l+r)>>;
if(L<=l&&r<=R){t[rt].sum+=(r-l+)*c;t[rt].tag+=c;return;}
pushdown(mid-l+,r-mid,rt);
if(L<=mid)upd2(L,R,c,rt<<);
if(R>mid)upd2(L,R,c,rt<<|);
t[rt].sum=t[rt<<].sum+t[rt<<|].sum;
}
ll query(ll L,ll R,ll rt){
ll l=t[rt].l,r=t[rt].r,mid=(l+r)>>,ans=;
if(L<=l&&r<=R)return t[rt].sum;
pushdown(mid-l+,r-mid,rt);
if(L<=mid)ans+=query(L,R,rt<<);
if(R>mid)ans+=query(L,R,rt<<|);
return ans;
}
ll solve_query(ll x,ll y){
ll sum=;
while(top[x]!=top[y]){
if(dep[top[x]]<dep[top[y]])swap(x,y);
sum+=query(pos[top[x]],pos[x],);
x=fa[top[x]];
}
if(pos[x]>pos[y])swap(x,y);
sum+=query(pos[x],pos[y],);
return sum;
}
int main(){
read(n);read(m);
for(ll i=;i<=n;i++)read(v[i]);
for(ll i=;i<n;i++){
ll x,y;
read(x);read(y);
insert(x,y);
}
dfs1();dfs2(,);
build(,n,);
for(ll i=;i<=n;i++)upd1(pos[i],v[i],);
while(m--){
ll pd,x,y;
read(pd);read(x);
if(pd==){
read(y);
upd1(pos[x],y,);
}else if(pd==){
read(y);
upd2(pos[x],pos[x]+siz[x]-,y,);
}else if(pd==){
writeln(solve_query(x,));
}
}
return ;
}

转载请注明出处:https://www.cnblogs.com/henry-1202/p/9129614.html

[bzoj 4034][HAOI 2015]树上操作的更多相关文章

  1. cogs 1963. [HAOI 2015] 树上操作 树链剖分+线段树

    1963. [HAOI 2015] 树上操作 ★★★☆   输入文件:haoi2015_t2.in   输出文件:haoi2015_t2.out   简单对比时间限制:1 s   内存限制:256 M ...

  2. 洛谷P3178[HAOI]2015 树上操作

    题目 树剖裸题,这个题更可以深刻的理解树剖中把树上的节点转换为区间的思想. 要注意在区间上连续的节点,一定是在一棵子树中. #include <bits/stdc++.h> #define ...

  3. 【BZOJ 4034】[HAOI2015]树上操作 差分+dfs序+树状数组

    我们只要看出来这道题 数组表示的含义就是 某个点到根节点路径权值和就行 那么我们可以把最终答案 看做 k*x+b x就是其深度 ,我们发现dfs序之后,修改一个点是差分一个区间,修改一个点的子树,可以 ...

  4. [HAOI 2015]树上染色

    Description 题库链接 给出一棵 \(n\) 个节点的树,边有权值.让你将树上 \(k\) 个点染黑,剩余 \(n-k\) 个点染白.染色后记一种染色方案的价值为黑点间两两距离和以及白点间两 ...

  5. BZOJ.4034 [HAOI2015]树上操作 ( 点权树链剖分 线段树 )

    BZOJ.4034 [HAOI2015]树上操作 ( 点权树链剖分 线段树 ) 题意分析 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个 操作,分为三种: 操作 1 :把某个节点 ...

  6. bzoj 4034: [HAOI2015]树上操作 树链剖分+线段树

    4034: [HAOI2015]树上操作 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 4352  Solved: 1387[Submit][Stat ...

  7. bzoj 4034: [HAOI2015]树上操作 (树剖+线段树 子树操作)

    4034: [HAOI2015]树上操作 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 6779  Solved: 2275[Submit][Stat ...

  8. [BZOJ]4034: [HAOI2015]树上操作

    [HAOI2015]树上操作 传送门 题目大意:三个操作 1:a,b,c b节点权值+c 2:a,b,c 以b为根的子树节点权值全部+c 3:a,b 查询b到根路径的权值和. 题解:树链剖分 操作1 ...

  9. [BZOJ 4034] 树上操作

    Link: BZOJ 4034 传送门 Solution: 树剖模板题…… Code: #include <bits/stdc++.h> using namespace std; type ...

随机推荐

  1. web前端名词

    HTML: HyperText Markup Language      超文本标记语言 XHTML:Extensible HyperText Markup Language   可扩展性超文本标记语 ...

  2. Rigid Frameworks (画图二分图规律 + DP + 数学组合容斥)

    题意:方格n*m,然后对于每一个格子有3种画法1左对角线2右对角线3不画,求让图形稳定的画法有多少种? 思路:通过手画二分图可以发现当二分图联通时改图满足条件,然后我们对于一个dp[n][m]可以利用 ...

  3. mysql 问题:连不上

    问题描述: 客户端报错: MySQL Authentication plugin ‘caching_sha2_password’ cannot be loaded 解决方式: ALTER USER ' ...

  4. 财务自由VS精神自由

    财务自由 财务自由,在物质层面改善人的生活.它使人不愁生计.住更宽敞明亮的房间,穿锦衣绸缎,自由自在地游玩,做自己想做的事儿.可是,这就是它的能力所及了.钱无法改变人的品味.审美和人格.它也无法告诉人 ...

  5. Spring 知识点提炼-转

    https://www.cnblogs.com/baizhanshi/p/7717563.html 1. Spring框架的作用 轻量:Spring是轻量级的,基本的版本大小为2MB 控制反转:Spr ...

  6. java-工厂方法模式学习笔记

    1.工厂模式分三种 1.1 普通工厂模式:就是建立一个工厂类,对实现了同一接口的一些类进行实例创建,如下图所示: 就以老司机开车(土豪开奔驰,宝马:屌丝骑自行车)为例,说明一下普通工厂模式: 首先,创 ...

  7. 大数据自学1-CentOS 下安装CDH及Cloudera Manager

    前面花了一段时间将Ubuntu,Hadoop装完,装到Hbase时,发现Hbase 与Hadoop是有兼容性问题的,Hbase 2.1版是不支持Hadoop 3.11版的,怪不得装起来那么多问题了. ...

  8. v-model指令实现简单的问卷表格

      <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&q ...

  9. 20180307-Xen、KVM、VMware、hyper-v等虚拟化技术的比较

    xen和kvm,是开源免费的虚拟化软件. vmware是付费的虚拟化软件. hyper-v比较特别,是微软windows 2008 R2附带的虚拟化组件,如果你买了足够的授权,hyper-v(包括hy ...

  10. 自动发现实现url+响应时间监控

    url自动发现脚本: [root@jenkins scripts]# cat  urlDiscovery.py #!/usr/bin/env python #coding:utf-8 import o ...