Topic在逻辑上可以被认为是一个queue队列,每条消息都必须指定它的topic,可以简单理解为必须指明把这条消息放进哪个queue里。为 了使得Kafka的吞吐率可以水平扩展,物理上把topic分成一个或多个partition,每个partition在物理上对应一个文件夹,该文件夹 下存储这个partition的所有消息和索引文件。
  
  每个日志文件都是“log entries”序列,每一个log entry包含一个4字节整型数(值为N),其后跟N个字节的消息体。每条消息都有一个当前partition下唯一的64字节的offset,它指明了这条消息的起始位置。磁盘上存储的消费格式如下:
  message length : 4 bytes (value: 1+4+n)
  “magic” value : 1 byte
  crc : 4 bytes
  payload : n bytes
  这个“log entries”并非由一个文件构成,而是分成多个segment,每个segment名为该segment第一条消息的offset和“.kafka”组成。另外会有一个索引文件,它标明了每个segment下包含的log entry的offset范围,
  因为每条消息都被append到该partition中,是顺序写磁盘,因此效率非常高(经验证,顺序写磁盘效率比随机写内存还要高,这是Kafka高吞吐率的一个很重要的保证)。
  
  每一条消息被发送到broker时,会根据paritition规则选择被存储到哪一个partition。如果partition规则设置的合理,
所有消息可以均匀分布到不同的partition里,这样就实现了水平扩展。(如果一个topic对应一个文件,那这个文件所在的机器I/O将会成为这个
topic的性能瓶颈,而partition解决了这个问题)。在创建topic时可以在$KAFKA_HOME/config/server.properties中指定这个partition的数量(如下所示),当然也可以在topic创建之后去修改parition数量。

# The default number of log partitions per topic. More partitions allow greater
# parallelism for consumption, but this will also result in more files across
# the brokers.
num.partitions=3

  在发送一条消息时,可以指定这条消息的key,producer根据这个key和partition机制来判断将这条消息发送到哪个 parition。paritition机制可以通过指定producer的paritition. class这一参数来指定,该class必须实现kafka.producer.Partitioner接口。本例中如果key可以被解析为整数则将对应的整数与partition总数取余,该消息会被发送到该数对应的partition。(每个parition都会有个序号)

import kafka.producer.Partitioner;
import kafka.utils.VerifiableProperties; public class JasonPartitioner<T> implements Partitioner { public JasonPartitioner(VerifiableProperties verifiableProperties) {} @Override
public int partition(Object key, int numPartitions) {
try {
int partitionNum = Integer.parseInt((String) key);
return Math.abs(Integer.parseInt((String) key) % numPartitions);
} catch (Exception e) {
return Math.abs(key.hashCode() % numPartitions);
}
}
}

 
  如果将上例中的class作为partition.class,并通过如下代码发送20条消息(key分别为0,1,2,3)至topic2(包含4个partition)。  

public void sendMessage() throws InterruptedException{
  for(int i = 1; i <= 5; i++){
   List messageList = new ArrayList<KeyedMessage<String, String>>();
   for(int j = 0; j < 4; j++){
   messageList.add(new KeyedMessage<String, String>("topic2", j+"", "The " + i + " message for key " + j));
   }
   producer.send(messageList);
}
  producer.close();
}

  则key相同的消息会被发送并存储到同一个partition里,而且key的序号正好和partition序号相同。(partition序号从0开始,本例中的key也正好从0开始)。如下图所示。
  
  对于传统的message
queue而言,一般会删除已经被消费的消息,而Kafka集群会保留所有的消息,无论其被消费与否。当然,因为磁盘限制,不可能永久保留所有数据(实际
上也没必要),因此Kafka提供两种策略去删除旧数据。一是基于时间,二是基于partition文件大小。例如可以通过配置$KAFKA_HOME/config/server.properties,让Kafka删除一周前的数据,也可通过配置让Kafka在partition文件超过1GB时删除旧数据,如下所示。

  ############################# Log Retention Policy #############################

# The following configurations control the disposal of log segments. The policy can
# be set to delete segments after a period of time, or after a given size has accumulated.
# A segment will be deleted whenever *either* of these criteria are met. Deletion always happens
# from the end of the log. # The minimum age of a log file to be eligible for deletion
log.retention.hours=168 # A size-based retention policy for logs. Segments are pruned from the log as long as the remaining
# segments don't drop below log.retention.bytes.
#log.retention.bytes=1073741824 # The maximum size of a log segment file. When this size is reached a new log segment will be created.
log.segment.bytes=1073741824 # The interval at which log segments are checked to see if they can be deleted according
# to the retention policies
log.retention.check.interval.ms=300000 # By default the log cleaner is disabled and the log retention policy will default to
#just delete segments after their retention expires.
# If log.cleaner.enable=true is set the cleaner will be enabled and individual logs
#can then be marked for log compaction.
log.cleaner.enable=false

  这里要注意,因为Kafka读取特定消息的时间复杂度为O(1),即与文件大小无关,所以这里删除文件与Kafka性能无关,选择怎样的删除策 略只与磁盘以及具体的需求有关。另外,Kafka会为每一个consumer group保留一些metadata信息—当前消费的消息的position,也即offset。这个offset由consumer控制。正常情况下 consumer会在消费完一条消息后线性增加这个offset。当然,consumer也可将offset设成一个较小的值,重新消费一些消息。因为 offet由consumer控制,所以Kafka broker是无状态的,它不需要标记哪些消息被哪些consumer过,不需要通过broker去保证同一个consumer group只有一个consumer能消费某一条消息,因此也就不需要锁机制,这也为Kafka的高吞吐率提供了有力保障。

超级账本Hyperledge的kafka共识算法里的Topic 与 Partition的更多相关文章

  1. 超级账本Hyperledge的关键部件说明

    帐本(Ledger) Fabric帐本(Ledger)是一系列有序和防篡改的状态转换的记录,结构由一个区块链构成,并将不可变的.有序的记录存放在区块中:同时包含一个状态数据库来记录当前的状态,账本的当 ...

  2. 浅析Hyperledger Fabric共识算法 摘自http://www.cocoachina.com/blockchain/20180829/24728.html

    Hyperledger Fabric共识算法 区块链系统是一个分布式架构,交易账本信息由各个节点管理,组成一个庞大的分布式账本.在分布式系统中,各个节点收到的交易信息的顺序可能存在差异(例如,网络延迟 ...

  3. 分布式超级账本Hyperledger为什么选择使用kafka引擎实现共识方案

    使用kafka集群配置的原因也很简单,为orderer共识及排序服务提供足够的容错空间,当我们向peer节点提交Transaction的时候,peer节点会得到或返回(基于SDK)一个读写集结果,该结 ...

  4. Hyperledger Fabric Model——超级账本组成模型

    超级账本组成模型 本文主要讲述Hyperledger Fabric的关键设计特性,并细述如何实现了一个全面的.可定制的企业级区块链解决方案: 资产定义--资产这里理解为任何具有货币价值的东西,它们都可 ...

  5. [区块链] 共识算法之争(PBFT,Raft,PoW,PoS,DPoS,Ripple)

    近几天对区块链中几种常见的共识机制(PBFT,Raft,PoW,PoS,DPoS,Ripple)进行了总结.尽量使用简单易懂语言,篇幅较大,想了解的可以只读每个算法介绍中前边的原理.本篇文章主要参考& ...

  6. 区块链知识博文1: 共识算法之争(PBFT,Raft,PoW,PoS,DPoS,Ripple)

    注:这是本人读到的关于共识算法最全和最好的分享博文,系统的介绍了拜占庭容错技术以及共识算法的原理和常用共识算法,原文链接请见后. 目录 一.拜占庭容错技术(Byzantine Fault Tolera ...

  7. Hyperledger超级账本在Centos7下搭建运行环境

    超级账本(hyperledger)是Linux基金会于2015年发起的推进区块链数字技术和交易验证的开源项目,加入成员包括:荷兰银行(ABN AMRO).埃森哲(Accenture)等十几个不同利益体 ...

  8. 菜鸟学习Fabric源码学习 — kafka共识机制

    Fabric 1.4源码分析 kafka共识机制 本文档主要介绍kafka共识机制流程.在查看文档之前可以先阅览raft共识流程以及orderer服务启动流程. 1. kafka 简介 Kafka是最 ...

  9. Proof of Elapsed Time--Hyperledger Sawtooth 共识算法

    这一片文章中我们介绍一下Hyperledger Sawtooth项目中所提出的PoET共识算法, 现有的区块链共识算法大概可以分为两种: Nakamoto consensus:通过乐透的方式选择出一个 ...

随机推荐

  1. 使用scrapy ImagesPipeline爬取图片资源

    这是一个使用scrapy的ImagesPipeline爬取下载图片的示例,生成的图片保存在爬虫的full文件夹里. scrapy startproject DoubanImgs cd DoubanIm ...

  2. 2.22 JS处理富文本

    2.22 JS处理富文本 前言    <富文本>这篇解决了富文本上iframe问题,其实没什么特别之处,主要是iframe的切换,本篇讲解通过js的方法处理富文本上iframe的问题一.加 ...

  3. JavaScript数据类型-2---Undefined、 Null、 Boolean、 Number、 String.

    学习目标 1.掌握JavaScript的数据类型 2.掌握typeof操作符 3.掌握Undefined 4.掌握null JavaScript的数据类型 ECMAScript中有5种简单数据类型(也 ...

  4. batch normalization在测试时的问题

    验证: 在测试时可以一张图,但设置use_global_stats:true,已经验证,第一台4gpu上,路径:/home/guangcong/projects/unlabeled-video/tra ...

  5. Linux内存压力测试stressapptest

    /********************************************************************** * Linux内存压力测试stressapptest * ...

  6. 【err】VIDEOIO ERROR: V4L: index 0 is not correct!Unable to connect to camera

    前言 新到手一块板子,程序编译成功之后,运行出现错误,不能连接到摄像头. 问题 VIDEOIO ERROR: V4L: index is not correct! Unable to connect ...

  7. [LeetCode&Python] Problem 705. Design HashSet

    Design a HashSet without using any built-in hash table libraries. To be specific, your design should ...

  8. [LeetCode&Python] Problem 100. Same Tree

    Given two binary trees, write a function to check if they are the same or not. Two binary trees are ...

  9. 斐波那契 - pythoon实现

    def fn_1(n): if n == 0 : return n elif n == 1 : return n else: a = [0,1] for i in range(2,n): a.appe ...

  10. djangorestful framework (三)学习

    十.分页器 -简单分页: -from rest_framework.pagination import PageNumberPagination -生成一个对象 -调用对象的.page.paginat ...