图的 储存 深度优先(DFS)广度优先(BFS)遍历
图遍历的概念:
从图中某顶点出发访遍图中每个顶点,且每个顶点仅访问一次,此过程称为图的遍历(Traversing
Graph)。图的遍历算法是求解图的连通性问题、拓扑排序和求关键路径等算法的基础。图的遍历顺序有两种:深度优先搜索(DFS)和广度优先搜索(BFS)。对每种搜索顺序,访问各顶点的顺序也不是唯一的。
一、图的存储结构
1.1 邻接矩阵
图的邻接矩阵存储方式是用两个数组来表示图。一个一维数组存储图中顶点信息,一个二维数组(邻接矩阵)存储图中的边或弧的信息。
设图G有n个顶点,则邻接矩阵是一个n*n的方阵,定义为:
看一个实例,下图左就是一个无向图。
从上面可以看出,无向图的边数组是一个对称矩阵。所谓对称矩阵就是n阶矩阵的元满足aij =
aji。即从矩阵的左上角到右下角的主对角线为轴,右上角的元和左下角相对应的元全都是相等的。
从这个矩阵中,很容易知道图中的信息。
(1)要判断任意两顶点是否有边无边就很容易了;
(2)要知道某个顶点的度,其实就是这个顶点vi在邻接矩阵中第i行或(第i列)的元素之和;
(3)求顶点vi的所有邻接点就是将矩阵中第i行元素扫描一遍,arc[i][j]为1就是邻接点;
而有向图讲究入度和出度,顶点vi的入度为1,正好是第i列各数之和。顶点vi的出度为2,即第i行的各数之和。
若图G是网图,有n个顶点,则邻接矩阵是一个n*n的方阵,定义为:
这里的wij表示(vi,vj)上的权值。无穷大表示一个计算机允许的、大于所有边上权值的值,也就是一个不可能的极限值。下面左图就是一个有向网图,右图就是它的邻接矩阵。
那么邻接矩阵是如何实现图的创建的呢?代码如下。
- #include <stdio.h>
- #include <stdlib.h>
- #include <curses.h>
- typedef char VertexType; //顶点类型应由用户定义
- typedef int EdgeType; //边上的权值类型应由用户定义
- #define MAXVEX 100 //最大顶点数,应由用户定义
- #define INFINITY 65535 //用65535来代表无穷大
- #define DEBUG
- typedef struct
- {
- VertexType vexs[MAXVEX]; //顶点表
- EdgeType arc[MAXVEX][MAXVEX]; //邻接矩阵,可看作边
- int numVertexes, numEdges; //图中当前的顶点数和边数
- }Graph;
- //定位
- int locates(Graph *g, char ch)
- {
- int i = 0;
- for(i = 0; i < g->numVertexes; i++)
- {
- if(g->vexs[i] == ch)
- {
- break;
- }
- }
- if(i >= g->numVertexes)
- {
- return -1;
- }
- return i;
- }
- //建立一个无向网图的邻接矩阵表示
- void CreateGraph(Graph *g)
- {
- int i, j, k, w;
- printf("输入顶点数和边数:\n");
- scanf("%d%d", &(g->numVertexes), &(g->numEdges));
- #ifdef DEBUG
- printf("%d %d\n", g->numVertexes, g->numEdges);
- #endif
- for(i = 0; i < g->numVertexes; i++)
- {
- g->vexs[i] = getchar();
- while(g->vexs[i] == '\n')
- {
- g->vexs[i] = getchar();
- }
- }
- #ifdef DEBUG
- for(i = 0; i < g->numVertexes; i++)
- {
- printf("%c ", g->vexs[i]);
- }
- printf("\n");
- #endif
- for(i = 0; i < g->numEdges; i++)
- {
- for(j = 0; j < g->numEdges; j++)
- {
- g->arc[i][j] = INFINITY; //邻接矩阵初始化
- }
- }
- for(k = 0; k < g->numEdges; k++)
- {
- char p, q;
- printf("输入边(vi,vj)上的下标i,下标j和权值:\n");
- //这一段是输入图的顶点符号序号,并查找该顶点符号在顶点符号域中对应的序号
- p = getchar();
- while(p == '\n')
- {
- p = getchar();
- }
- q = getchar();
- while(q == '\n')
- {
- q = getchar();
- }
- scanf("%d", &w);
- int m = -1;
- int n = -1;
- m = locates(g, p);
- n = locates(g, q);
- if(n == -1 || m == -1)
- {
- fprintf(stderr,"there is no this vertex.\n");
- return;
- }
- //getchar();
- g->arc[m][n] = w;
- g->arc[n][m] = g->arc[m][n]; //因为是无向图,矩阵对称
- }
- }
- //打印图
- void printGraph(Graph g)
- {
- int i, j;
- for(i = 0; i < g.numVertexes; i++)
- {
- for(j = 0; j < g.numVertexes; j++)
- {
- printf("%d ", g.arc[i][j]);
- }
- printf("\n");
- }
- }
- int main(int argc,char** argv)
- {
- Graph g;
- //邻接矩阵创建图
- CreateGraph(&g);
- printGraph(g);
- return 0;
- }
从代码中可以得到,n个顶点和e条边的无向网图的创建,时间复杂度为O(n + n2 +
e),其中对邻接矩阵Grc的初始化耗费了O(n2)的时间。
1.2 邻接表
邻接矩阵是不错的一种图存储结构,但是,对于边数相对顶点较少的图,这种结构存在对存储空间的极大浪费。因此,找到一种数组与链表相结合的存储方法称为邻接表。
邻接表的处理方法是这样的:
(1)图中顶点用一个一维数组存储,当然,顶点也可以用单链表来存储,不过,数组可以较容易的读取顶点的信息,更加方便。
(2)图中每个顶点vi的所有邻接点构成一个线性表,由于邻接点的个数不定,所以,用单链表存储,无向图称为顶点vi的边表,有向图则称为顶点vi作为弧尾的出边表。
例如,下图就是一个无向图的邻接表的结构。
从图中可以看出,顶点表的各个结点由data和firstedge两个域表示,data是数据域,存储顶点的信息,firstedge是指针域,指向边表的第一个结点,即此顶点的第一个邻接点。边表结点由adjvex和next两个域组成。adjvex是邻接点域,存储某顶点的邻接点在顶点表中的下标,next则存储指向边表中下一个结点的指针。
对于带权值的网图,可以在边表结点定义中再增加一个weight的数据域,存储权值信息即可。如下图所示。
对于邻接表结构,图的建立代码如下。
- /* 邻接表表示的图结构 */
- #include <stdio.h>
- #include<stdlib.h>
- #define DEBUG
- #define MAXVEX 1000 //最大顶点数
- typedef char VertexType; //顶点类型应由用户定义
- typedef int EdgeType; //边上的权值类型应由用户定义
- typedef struct EdgeNode //边表结点
- {
- int adjvex; //邻接点域,存储该顶点对应的下标
- EdgeType weigth; //用于存储权值,对于非网图可以不需要
- struct EdgeNode *next; //链域,指向下一个邻接点
- }EdgeNode;
- typedef struct VertexNode //顶点表结构
- {
- VertexType data; //顶点域,存储顶点信息
- EdgeNode *firstedge; //边表头指针
- }VertexNode, AdjList[MAXVEX];
- typedef struct
- {
- AdjList adjList;
- intnumVertexes, numEdges; //图中当前顶点数和边数
- }GraphList;
- int Locate(GraphList *g, char ch)
- {
- int i;
- for(i = 0; i < MAXVEX; i++)
- {
- if(ch == g->adjList[i].data)
- {
- break;
- }
- }
- if(i >= MAXVEX)
- {
- fprintf(stderr,"there is no vertex.\n");
- return-1;
- }
- returni;
- }
- //建立图的邻接表结构
- void CreateGraph(GraphList *g)
- {
- int i, j, k;
- EdgeNode *e;
- EdgeNode *f;
- printf("输入顶点数和边数:\n");
- scanf("%d,%d", &g->numVertexes, &g->numEdges);
- #ifdef DEBUG
- printf("%d,%d\n", g->numVertexes, g->numEdges);
- #endif
- for(i = 0; i < g->numVertexes; i++)
- {
- printf("请输入顶点%d:\n", i);
- g->adjList[i].data = getchar(); //输入顶点信息
- g->adjList[i].firstedge = NULL; //将边表置为空表
- while(g->adjList[i].data == '\n')
- {
- g->adjList[i].data = getchar();
- }
- }
- //建立边表
- for(k = 0; k < g->numEdges; k++)
- {
- printf("输入边(vi,vj)上的顶点序号:\n");
- char p, q;
- p = getchar();
- while(p == '\n')
- {
- p = getchar();
- }
- q = getchar();
- while(q == '\n')
- {
- q = getchar();
- }
- intm, n;
- m = Locate(g, p);
- n = Locate(g, q);
- if(m == -1 || n == -1)
- {
- return;
- }
- #ifdef DEBUG
- printf("p = %c\n", p);
- printf("q = %c\n", q);
- printf("m = %d\n", m);
- printf("n = %d\n", n);
- #endif
- //向内存申请空间,生成边表结点
- e = (EdgeNode *)malloc(sizeof(EdgeNode));
- if(e == NULL)
- {
- fprintf(stderr,"malloc() error.\n");
- return;
- }
- //邻接序号为j
- e->adjvex = n;
- //将e指针指向当前顶点指向的结构
- e->next = g->adjList[m].firstedge;
- //将当前顶点的指针指向e
- g->adjList[m].firstedge = e;
- f = (EdgeNode *)malloc(sizeof(EdgeNode));
- if(f == NULL)
- {
- fprintf(stderr,"malloc() error.\n");
- return;
- }
- f->adjvex = m;
- f->next = g->adjList[n].firstedge;
- g->adjList[n].firstedge = f;
- }
- }
- void printGraph(GraphList *g)
- {
- int i = 0;
- #ifdef DEBUG
- printf("printGraph() start.\n");
- #endif
- while(g->adjList[i].firstedge != NULL && i < MAXVEX)
- {
- printf("顶点:%c ", g->adjList[i].data);
- EdgeNode *e = NULL;
- e = g->adjList[i].firstedge;
- while(e != NULL)
- {
- printf("%d ", e->adjvex);
- e = e->next;
- }
- i++;
- printf("\n");
- }
- }
- int main(int argc,char **argv)
- {
- GraphList g;
- CreateGraph(&g);
- printGraph(&g);
- return 0;
- }
对于无向图,一条边对应都是两个顶点,所以,在循环中,一次就针对i和j分布进行插入。
本算法的时间复杂度,对于n个顶点e条边来说,很容易得出是O(n+e)。
1.3 十字链表
对于有向图来说,邻接表是有缺陷的。关心了出度问题,想了解入度就必须要遍历整个图才知道,反之,逆邻接表解决了入度却不了解出度情况。下面介绍的这种有向图的存储方法:十字链表,就是把邻接表和逆邻接表结合起来的。
重新定义顶点表结点结构,如下所示。
其中firstin表示入边表头指针,指向该顶点的入边表中第一个结点,firstout表示出边表头指针,指向该顶点的出边表中的第一个结点。
重新定义边表结构,如下所示。
其中,tailvex是指弧起点在顶点表的下表,headvex是指弧终点在顶点表的下标,headlink是指入边表指针域,指向终点相同的下一条边,taillink是指边表指针域,指向起点相同的下一条边。如果是网,还可以增加一个weight域来存储权值。
比如下图,顶点依然是存入一个一维数组,实线箭头指针的图示完全与邻接表相同。就以顶点v0来说,firstout指向的是出边表中的第一个结点v3。所以,v0边表结点hearvex
= 3,而tailvex其实就是当前顶点v0的下标0,由于v0只有一个出边顶点,所有headlink和taillink都是空的。
重点需要解释虚线箭头的含义。它其实就是此图的逆邻接表的表示。对于v0来说,它有两个顶点v1和v2的入边。因此的firstin指向顶点v1的边表结点中headvex为0的结点,如上图圆圈1。接着由入边结点的headlink指向下一个入边顶点v2,如上图圆圈2。对于顶点v1,它有一个入边顶点v2,所以它的firstin指向顶点v2的边表结点中headvex为1的结点,如上图圆圈3。
十字链表的好处就是因为把邻接表和逆邻接表整合在一起,这样既容易找到以v为尾的弧,也容易找到以v为头的弧,因而比较容易求得顶点的出度和入度。
而且除了结构复杂一点外,其实创建图算法的时间复杂度是和邻接表相同的,因此,在有向图应用中,十字链表是非常好的数据结构模型。
这里就介绍以上三种存储结构,除了第三种存储结构外,其他的两种存储结构比较简单。
二、图的遍历
图的遍历和树的遍历类似,希望从图中某一顶点出发访遍图中其余顶点,且使每一个顶点仅被访问一次,这一过程就叫图的遍历。
对于图的遍历来说,如何避免因回路陷入死循环,就需要科学地设计遍历方案,通过有两种遍历次序方案:深度优先遍历和广度优先遍历。
2.1 深度优先遍历
深度优先遍历,也有称为深度优先搜索,简称DFS。其实,就像是一棵树的前序遍历。
它从图中某个结点v出发,访问此顶点,然后从v的未被访问的邻接点出发深度优先遍历图,直至图中所有和v有路径相通的顶点都被访问到。若图中尚有顶点未被访问,则另选图中一个未曾被访问的顶点作起始点,重复上述过程,直至图中的所有顶点都被访问到为止。
我们用邻接矩阵的方式,则代码如下所示。
- #define MAXVEX 100 //最大顶点数
- typedef int Boolean; //Boolean 是布尔类型,其值是TRUE 或FALSE
- Boolean visited[MAXVEX]; //访问标志数组
- #define TRUE 1
- #define FALSE 0
- //邻接矩阵的深度优先递归算法
- void DFS(Graph g, int i)
- {
- int j;
- visited[i] = TRUE;
- printf("%c ", g.vexs[i]); //打印顶点,也可以其他操作
- for(j = 0; j < g.numVertexes; j++)
- {
- if(g.arc[i][j] == 1 && !visited[j])
- {
- DFS(g, j); //对为访问的邻接顶点递归调用
- }
- }
- }
- //邻接矩阵的深度遍历操作
- void DFSTraverse(Graph g)
- {
- inti;
- for(i = 0; i < g.numVertexes; i++)
- {
- visited[i] = FALSE; //初始化所有顶点状态都是未访问过状态
- }
- for(i = 0; i < g.numVertexes; i++)
- {
- if(!visited[i]) //对未访问的顶点调用DFS,若是连通图,只会执行一次
- {
- DFS(g,i);
- }
- }
- }
- 如果使用的是邻接表存储结构,其DFSTraverse函数的代码几乎是相同的,只是在递归函数中因为将数组换成了链表而有不同,代码如下。
- //邻接表的深度递归算法
- void DFS(GraphList g, int i)
- {
- EdgeNode *p;
- visited[i] = TRUE;
- printf("%c ", g->adjList[i].data); //打印顶点,也可以其他操作
- p = g->adjList[i].firstedge;
- while(p)
- {
- if(!visited[p->adjvex])
- {
- DFS(g, p->adjvex); //对访问的邻接顶点递归调用
- }
- p = p->next;
- }
- }
- //邻接表的深度遍历操作
- void DFSTraverse(GraphList g)
- {
- int i;
- for(i = 0; i < g.numVertexes; i++)
- {
- visited[i] = FALSE;
- }
- for(i = 0; i < g.numVertexes; i++)
- {
- if(!visited[i])
- {
- DFS(g, i);
- }
- }
- }
对比两个不同的存储结构的深度优先遍历算法,对于n个顶点e条边的图来说,邻接矩阵由于是二维数组,要查找某个顶点的邻接点需要访问矩阵中的所有元素,因为需要O(n2)的时间。而邻接表做存储结构时,找邻接点所需的时间取决于顶点和边的数量,所以是O(n+e)。显然对于点多边少的稀疏图来说,邻接表结构使得算法在时间效率上大大提高。
2.2 广度优先遍历
广度优先遍历,又称为广度优先搜索,简称BFS。图的广度优先遍历就类似于树的层序遍历了。
邻接矩阵做存储结构时,广度优先搜索的代码如下。
- //邻接矩阵的广度遍历算法
- void BFSTraverse(Graph g)
- {
- int i, j;
- Queue q;
- for(i = 0; i < g.numVertexes; i++)
- {
- visited[i] = FALSE;
- }
- InitQueue(&q);
- for(i = 0; i < g.numVertexes; i++)//对每个顶点做循环
- {
- if(!visited[i]) //若是未访问过
- {
- visited[i] = TRUE;
- printf("%c ", g.vexs[i]); //打印结点,也可以其他操作
- EnQueue(&q, i); //将此结点入队列
- while(!QueueEmpty(q)) //将队中元素出队列,赋值给
- {
- intm;
- DeQueue(&q, &m);
- for(j = 0; j < g.numVertexes; j++)
- {
- //判断其他顶点若与当前顶点存在边且未访问过
- if(g.arc[m][j] == 1 && !visited[j])
- {
- visited[j] = TRUE;
- printf("%c ", g.vexs[j]);
- EnQueue(&q, j);
- }
- }
- }
- }
- }
- }
对于邻接表的广度优先遍历,代码与邻接矩阵差异不大, 代码如下。
- //邻接表的广度遍历算法
- void BFSTraverse(GraphList g)
- {
- int i;
- EdgeNode *p;
- Queue q;
- for(i = 0; i < g.numVertexes; i++)
- {
- visited[i] = FALSE;
- }
- InitQueue(&q);
- for(i = 0; i < g.numVertexes; i++)
- {
- if(!visited[i])
- {
- visited[i] = TRUE;
- printf("%c ", g.adjList[i].data); //打印顶点,也可以其他操作
- EnQueue(&q, i);
- while(!QueueEmpty(q))
- {
- intm;
- DeQueue(&q, &m);
- p = g.adjList[m].firstedge; 找到当前顶点边表链表头指针
- while(p)
- {
- if(!visited[p->adjvex])
- {
- visited[p->adjvex] = TRUE;
- printf("%c ", g.adjList[p->adjvex].data);
- EnQueue(&q, p->adjvex);
- }
- p = p->next;
- }
- }
- }
- }
- }
对比图的深度优先遍历与广度优先遍历算法,会发现,它们在时间复杂度上是一样的,不同之处仅仅在于对顶点的访问顺序不同。可见两者在全图遍历上是没有优劣之分的,只是不同的情况选择不同的算法。
图的 储存 深度优先(DFS)广度优先(BFS)遍历的更多相关文章
- 邻接矩阵实现图的存储,DFS,BFS遍历
图的遍历一般由两者方式:深度优先搜索(DFS),广度优先搜索(BFS),深度优先就是先访问完最深层次的数据元素,而BFS其实就是层次遍历,每一层每一层的遍历. 1.深度优先搜索(DFS) 我一贯习惯有 ...
- 数据结构(12) -- 图的邻接矩阵的DFS和BFS
//////////////////////////////////////////////////////// //图的邻接矩阵的DFS和BFS ////////////////////////// ...
- 图的DFS与BFS遍历
一.图的基本概念 1.邻接点:对于无向图无v1 与v2之间有一条弧,则称v1与v2互为邻接点:对于有向图而言<v1,v2>代表有一条从v1到v2的弧,则称v2为v1的邻接点. 2.度:就是 ...
- 列出连通集(DFS及BFS遍历图) -- 数据结构
题目: 7-1 列出连通集 (30 分) 给定一个有N个顶点和E条边的无向图,请用DFS和BFS分别列出其所有的连通集.假设顶点从0到N−1编号.进行搜索时,假设我们总是从编号最小的顶点出发,按编号递 ...
- DFS和BFS遍历的问题
来自https://github.com/soulmachine/leetcode 广度优先搜索 输入数据:没有什么特征,不像dfs需要有递归的性质.如果是树/图,概率更大. 状态转换图:数或者DAG ...
- 判断图连通的三种方法——dfs,bfs,并查集
Description 如果无向图G每对顶点v和w都有从v到w的路径,那么称无向图G是连通的.现在给定一张无向图,判断它是否是连通的. Input 第一行有2个整数n和m(0 < n,m < ...
- 【数据结构与算法笔记04】对图搜索策略的一些思考(包括DFS和BFS)
图搜索策略 这里的"图搜索策略"应该怎么理解呢? 首先,是"图搜索",所谓图无非就是由节点和边组成的,那么图搜索也就是将这个图中所有的节点和边都访问一遍. 其次 ...
- 【Python算法】遍历(Traversal)、深度优先(DFS)、广度优先(BFS)
图结构: 非常强大的结构化思维(或数学)模型.如果您能用图的处理方式来规范化某个问题,即使这个问题本身看上去并不像个图问题,也能使您离解决问题更进一步. 在众多图算法中,我们常会用到一种非常实用的思维 ...
- 图的深度优先和广度优先遍历(图以邻接表表示,由C++面向对象实现)
学习了图的深度优先和广度优先遍历,发现不管是教材还是网上,大都为C语言函数式实现,为了加深理解,我以C++面向对象的方式把图的深度优先和广度优先遍历重写了一遍. 废话不多说,直接上代码: #inclu ...
随机推荐
- Linux电源管理【转】
转自:http://www.cnblogs.com/sky-zhang/archive/2012/06/05/2536807.html PM notifier机制: 应用场景: There are s ...
- GCC选项_-Wl,-soname 及 DT_NEEDED 的解释
-Wl选项告诉编译器将后面的参数传递给链接器. -soname则指定了动态库的soname(简单共享名,Short for shared object name) soname的关键功能是它提供了兼容 ...
- ES系列四、ES6.3常用api之文档类api
1.Index API: 创建并建立索引 PUT twitter/tweet/ { "user" : "kimchy", "post_date&quo ...
- Spark学习之第一个程序打包、提交任务到集群
1.免秘钥登录配置: ssh-keygen cd .ssh touch authorized_keys cat id_rsa.pub > authorized_keys chmod 600 au ...
- android 手机拍照返回 Intent==null 以及intent.getData==null
手机拍照第一种情况:private void takePicture(){ Intent intent = new Intent(MediaStore.ACTION_IMAGE_CAPTURE);Si ...
- web前端开发分享-css,js提高篇
一. css基础知识掌握之后(个人的标准是:弄清块元素与内联元素的区别,弄清float的应用场景,弄清position[pə'zɪʃən] 下五个属性static['stætɪk],relative[ ...
- wpf 来回拉动滚动条抛异常
其中的控件,来回快速的来动滚动条,抛如下异常,但是完全代码捕捉不到. 这个树用到了VirtualizingStackPanel.IsVirtualizing="True".去掉该句 ...
- unittest中更高效的执行测试用例一个类只需要打开一次浏览器
示例代码 baidu.py # _*_ coding:utf-8 _*_ import csv,unittest #导入csv模块 from time import sleep from seleni ...
- 浅析C语言的变量
参考资料 寄存器变量 用register声明的变量是寄存器变量,是存放在CPU的寄存器里的.而我们平时声明的变量是存放在内存中的.虽说内存的速度已经很快了,不过跟寄存器比起来还是差得远. 寄存器变量和 ...
- 记一次Oracle分区表错误:ORA-14400: 插入的分区关键字未映射到任何分区
https://blog.csdn.net/xdyzgjy/article/details/42238735