AtCoder Regular Contest 102 D - All Your Paths are Different Lengths
D - All Your Paths are Different Lengths
思路:
二进制构造
首先找到最大的t,使得2^t <= l
然后我们就能构造一种方法使得正好存在 0 到 2^t - 1 的路径
方法是:对于节点 i 到 i + 1,添加两条边,一条边权值是2^(i-1),一条边权值是0
对于剩下的2^t 到 l-1的路径,我们考虑倍增地求,每次添加一条节点 v 到 节点 n 的边,边的权值是 X ,新增的路径是X 到 X + 2^(v-1) - 1
第一次的X是 2^t,之后每次倍增X增加 2^v,使得 X + 2^v <= l
代码:
#pragma GCC optimize(2)
#pragma GCC optimize(3)
#pragma GCC optimize(4)
#include<bits/stdc++.h>
using namespace std;
#define fi first
#define se second
#define pi acos(-1.0)
#define LL long long
//#define mp make_pair
#define pb push_back
#define ls rt<<1, l, m
#define rs rt<<1|1, m+1, r
#define ULL unsigned LL
#define pll pair<LL, LL>
#define pii pair<int, int>
#define piii pair<pii, int>
#define mem(a, b) memset(a, b, sizeof(a))
#define fio ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
#define fopen freopen("in.txt", "r", stdin);freopen("out.txt", "w", stout);
//head vector<piii> ans;
int main() {
int l, t, n;
scanf("%d", &l);
for (int i = ; ; i--) {
if((<<i) <= l) {
t = i;
n = t+;
break;
}
}
for (int i = ; i <= t; i++) {
ans.pb({{i, i+}, <<i-});
ans.pb({{i, i+}, });
}
int res = l - (<<t), now = (<<t);
for (int i = n-; i >= ; i--) {
if((<<i-) <= res) {
res -= <<i-;
ans.pb({{i, n}, now});
now += <<i-;
}
}
printf("%d %d\n", n, (int)ans.size());
for (int i = ; i < ans.size(); i++) printf("%d %d %d\n", ans[i].fi.fi, ans[i].fi.se, ans[i].se);
return ;
}
AtCoder Regular Contest 102 D - All Your Paths are Different Lengths的更多相关文章
- AtCoder Regular Contest 102
AtCoder Regular Contest 102 C - Triangular Relationship 题意: 给出n,k求有多少个不大于n的三元组,使其中两两数字的和都是k的倍数,数字可以重 ...
- 2018.09.02 Atcoder Regular Contest 102简要题解
比赛传送门 T1 Triangular Relationship 分析之后发现有两种情况: 1. n为奇数,那么所有数都是k的倍数. 2. n为偶数,那么所有数都是k/2的倍数. 然后就可以愉快A题了 ...
- AtCoder Regular Contest 102 (ARC102) D All Your Paths are Different Lengths 构造
原文链接https://www.cnblogs.com/zhouzhendong/p/ARC102D.html 题目传送门 - ARC102D 题意 给定 $L$,请你构造一个节点个数为 $n$ ,边 ...
- AtCoder Regular Contest 102 E Stop. Otherwise...
题目链接:atcoder 大意:有\(n\)个骰子,每个骰子上面有\(k\)个数,分别是\(1\text ~ k\),现在求\(\forall i\in[2...2k]\),求出有多少种骰子点数的组合 ...
- AtCoder Regular Contest 102 (ARC102) E - Stop. Otherwise... 排列组合
原文链接https://www.cnblogs.com/zhouzhendong/p/ARD102E.html 题目传送门 - ARC102E 题意 有 $n$ 个取值为 $[1,k]$ 的骰子,对于 ...
- AtCoder Regular Contest 061
AtCoder Regular Contest 061 C.Many Formulas 题意 给长度不超过\(10\)且由\(0\)到\(9\)数字组成的串S. 可以在两数字间放\(+\)号. 求所有 ...
- AtCoder Regular Contest 094 (ARC094) CDE题解
原文链接http://www.cnblogs.com/zhouzhendong/p/8735114.html $AtCoder\ Regular\ Contest\ 094(ARC094)\ CDE$ ...
- AtCoder Regular Contest 092
AtCoder Regular Contest 092 C - 2D Plane 2N Points 题意: 二维平面上给了\(2N\)个点,其中\(N\)个是\(A\)类点,\(N\)个是\(B\) ...
- AtCoder Regular Contest 093
AtCoder Regular Contest 093 C - Traveling Plan 题意: 给定n个点,求出删去i号点时,按顺序从起点到一号点走到n号点最后回到起点所走的路程是多少. \(n ...
随机推荐
- P2590 [ZJOI2008]树的统计(树链剖分)
P2590 [ZJOI2008]树的统计 虽然是入门树剖模板 但是我终于1A了(大哭) 懒得写啥了(逃 #include<iostream> #include<cstdio> ...
- 2018-2019-1 20189206 《Linux内核原理与分析》第七周作业
linux内核分析学习笔记 --第六章 进程的描述和进程的创建 学习重点--子进程的创建以及运行流程 进程描述和进程的创建 操作系统的三大功能--进程管理.内存管理和文件系统. 在linux内核中利用 ...
- CentOS 安装 Redis 笔记
Redis 安装 yum install redis -y 在启动 redis-server 之前,你需要修改配置文件/etc/redis.conf: 找到 bind 127.0.0.1,将其注释,这 ...
- Python 模块的加载顺序
基本概念 module 模块, 一个 py 文件或以其他文件形式存在的可被导入的就是一个模块 package 包,包含有 init 文件的文件夹 relative path 相对路径,相对于某个目录的 ...
- POJ 3250 Bad Hair Day【单调栈入门】
Bad Hair Day Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 24112 Accepted: 8208 Des ...
- tp剩余未验证内容
new Image(宽度,高度) $(image).attr('src', ...).load(function(){....}) load表示浏览器从服务器下载(装载)对象完成, 这个load方法很 ...
- LabVIEW编程实例:如何通过TCP协议进行数据通信
对于网络通信来说,LabVIEW平台本身提供了多种方法加以实现,如可以通过TCP协议.UDP协议.DataSocket技术.甚至远程面板通信技术等方式进行通信. 下面通过一个简单的例子,演示在LabV ...
- hihoCoder week4 Trie图
ac自动机 题目链接 https://hihocoder.com/contest/hiho4/problem/1 参考:https://blog.csdn.net/baidu_30541191/art ...
- P1948 [USACO08JAN]电话线Telephone Lines(二分答案+最短路)
思路 考虑题目要求求出最小的第k+1大的边权,想到二分答案 然后二分第k+1大的边权wx 把所有边权<=wx的边权变为0,边权>wx的边权变为0,找出最短路之后,如果dis[T]<= ...
- 论文笔记之:Deep Attributes Driven Multi-Camera Person Re-identification
Deep Attributes Driven Multi-Camera Person Re-identification 2017-06-28 21:38:55 [Motivation] 本文 ...