题目传送门

  传送点I

  传送点II

题目大意

  给定一个长度为$n$的序列。询问区间$[l, r]$的所有不同的子序列的最小值的和。

  这里的子序列是连续的。两个子序列不同当且仅当它们的左端点或右端点不同。

  不会直接上神奇数据结构的做法。

  考虑莫队。当在一段右边加入一个数后,考虑它产生的贡献。

  首先找到加入后这一段的最小值,那么左端点在它的左侧的时候这个最小值做出贡献。

  对于它右边到新加入的数新造成的贡献用同样的方法计算,期望下多带个$log$,然后题目没说数据随机。

  考虑右边这一部分其实被算重了许多次,因为最小值右边的分段情况比较固定。因为每个"最小值"有一个固定的“恶势力”范围。这个东西可以用前缀和再加上单调栈预处理。

  求最小的任务就交给st表好了。

Code

 /**
  * bzoj
  * Problem#4540
  * Accepted
  * Time: 10024ms
  * Memory: 34932k
  */
 #include <algorithm>
 #include <iostream>
 #include <cstdlib>
 #include <cstdio>
 #ifndef WIN32
 #define Auto "%lld"
 #else
 #define Auto "%I64d"
 #endif
 using namespace std;
 typedef bool boolean;

 );
 , bzmax = ;
 #define pii pair<int, int>
 #define fi first
 #define sc second

 typedef class SparseTable {
     public:
         int n;
         int *ar;
         int log2[N];
         pii bz[N][bzmax];

         SparseTable() {    }
         SparseTable(int n, int* ar):n(n) {
             log2[] = ;
             ; i <= n; i++)
                 log2[i] = log2[i >> ] + ;
             ; i < n; i++)
                 bz[i][] = min(pii(ar[i], i), pii(ar[i + ], i + ));
             ; j < bzmax; j++)
                 ; i + ( << j) <= n + ; i++)
                     bz[i][j] = min(bz[i][j - ], bz[i + ( << (j - ))][j - ]);
         }

         int query(int l, int r) {
             if (l == r)    return l;
             int l2 = log2[r - l];
              << l2)][l2]).sc;
         }
 }SparseTable;

 ;
 #define ll long long

 typedef class Query {
     public:
         int l, r, id;
         ll res;

         Query() { }

         boolean operator < (Query b) const {
             if (l / cs != b.l / cs)    return l / cs < b.l / cs;
             return r < b.r;
         }
 }Query;

 int n, m;
 ;
 Query *qs;
 SparseTable st;
 ll *pl, *pr;
 int *ar;
 pii *sta;

 inline void init() {
     scanf("%d%d", &n, &m);
     pl = )];
     pr = )];
     ar = )];
     sta = )];
     qs = )];
     ; i <= n; i++)
         scanf("%d", ar + i);
     st = SparseTable(n, ar);
     ; i <= m; i++)
         scanf("%d%d", &qs[i].l, &qs[i].r), qs[i].id = i;
 }

 inline void prepare() {
     sta[++tp] = pii(, -inf);
     pl[] = , pr[n + ] = ;
     ; i <= n; i++) {
         while (tp && sta[tp].sc >= ar[i])
             tp--;
         pl[i] = pl[sta[tp].fi] + (i - sta[tp].fi) * 1ll * ar[i];
         sta[++tp] = pii(i, ar[i]);
     }

     sta[tp = ] = pii(n + , -inf);
     for (int i = n; i; i--) {
         while (tp && sta[tp].sc >= ar[i])
             tp--;
         pr[i] = pr[sta[tp].fi] + (sta[tp].fi - i) * 1ll * ar[i];
         sta[++tp] = pii(i, ar[i]);
     }
 }

 ll res = ;

 inline void solve() {
     sort(qs + , qs + m + );
     ;
     , p; sid <= n / cs && c <= m; sid++) {
         , mdzzr = ;
         res = ;
         for ( ; c <= m && qs[c].l / cs == sid; c++) {
             while (mdzzr < qs[c].r) {
                 p = st.query(mdzzl, ++mdzzr);
                 res += (p - mdzzl + ) * 1ll * ar[p] + pl[mdzzr] - pl[p];
             }
             while (mdzzl < qs[c].l) {
                 p = st.query(mdzzl, mdzzr);
                 res -= (mdzzr - p + ) * 1ll * ar[p] + pr[mdzzl] - pr[p];
                 mdzzl++;
             }
             while (mdzzl > qs[c].l) {
                 p = st.query(--mdzzl, mdzzr);
                 res += (mdzzr - p + ) * 1ll * ar[p] + pr[mdzzl] - pr[p];
             }
             qs[c].res = res;
         }
     }
     ; i <= m; i++)
         while (qs[i].id != i)
             swap(qs[i], qs[qs[i].id]);
     ; i <= m; i++)
         printf(Auto"\n", qs[i].res);
 }

 int main() {
     init();
     prepare();
     solve();
     ;
 }

bzoj 4540 [HNOI 2016] 序列 - 莫队算法 - Sparse-Table - 单调栈的更多相关文章

  1. BZOJ 3809 Gty的二逼妹子序列 莫队算法+分块

    Description Autumn和Bakser又在研究Gty的妹子序列了!但他们遇到了一个难题. 对于一段妹子们,他们想让你帮忙求出这之内美丽度∈[a,b]的妹子的美丽度的种类数. 为了方便,我们 ...

  2. BZOJ 3236 AHOI 2013 作业 莫队算法

    题目大意:给出一些数,问在一个区间中不同的数值有多少种,和在一个区间中不同的数值有多少个. 思路:因为没有改动,所以就想到了莫队算法.然后我写了5K+的曼哈顿距离最小生成树,然后果断T了.(100s的 ...

  3. BZOJ 3289: Mato的文件管理[莫队算法 树状数组]

    3289: Mato的文件管理 Time Limit: 40 Sec  Memory Limit: 128 MBSubmit: 2399  Solved: 988[Submit][Status][Di ...

  4. [bzoj4540][Hnoi2016][序列] (莫队算法+单调栈+st表)

    Description 给定长度为n的序列:a1,a2,…,an,记为a[1:n].类似地,a[l:r](1≤l≤r≤N)是指序列:al,al+1,…,ar-1,ar.若1≤l≤s≤t≤r≤n,则称a ...

  5. 【BZOJ4540】[Hnoi2016]序列 莫队算法+单调栈

    [BZOJ4540][Hnoi2016]序列 Description 给定长度为n的序列:a1,a2,…,an,记为a[1:n].类似地,a[l:r](1≤l≤r≤N)是指序列:al,al+1,…,a ...

  6. bzoj 5301: [Cqoi2018]异或序列 (莫队算法)

    链接:https://www.lydsy.com/JudgeOnline/problem.php?id=5301 题面; 5301: [Cqoi2018]异或序列 Time Limit: 10 Sec ...

  7. bzoj 3757 苹果树(树上莫队算法)

    [题意] 有若干个询问,询问路径u,v上的颜色总数,另外有要求a,b,意为将a颜色看作b颜色. [思路] vfk真是神系列233. Quote: 用S(v, u)代表 v到u的路径上的结点的集合. 用 ...

  8. BZOJ 4540 [Hnoi2016]序列 (单调栈 + ST表 + 莫队算法)

    题目链接  BZOJ4540 考虑莫队算法. 这题难在$[l, r]$到$[l, r+1]$的转移. 根据莫队算法的原理,这个时候答案应该加上 $cal(l, r+1) + cal(l+1, r+1) ...

  9. bzoj 3809 Gty的二逼妹子序列(莫队算法,块状链表)

    [题意] 回答若干个询问,(l,r,a,b):区间[l,r]内权值在[a,b]的数有多少[种]. [思路] 考虑使用块状链表实现莫队算法中的插入与删除. 因为权值处于1..n之间,所以我们可以建一个基 ...

随机推荐

  1. java随机排座位

    //打乱学生顺序 Collections.shuffle(); 容我记个单词 peer: vi.凝视; 盯着看; 隐退,若隐若现; 同等,比得上;n.同辈,同等的人; 贵族; 同伴,伙伴;adj.贵族 ...

  2. MyBatis基础入门《十》添加数据

    MyBatis基础入门<十>添加数据 描述: 修改了实体类:TblClient.java,将其字段:cbirthday 由String类型改成了Date类型. TblClient.java ...

  3. fiddler2抓包数据工具使用教程

    一款免费且功能强大的数据包抓取软件.它通过代理的方式获取程序http通讯的数据,可以用其检测网页和服务器的交互情况,能够记录所有客户端和服务器间的http请求,支持监视.设置断点.甚至修改输入输出数据 ...

  4. spark sql01

    package sql; import org.apache.spark.SparkConf; import org.apache.spark.api.java.JavaSparkContext; i ...

  5. table 的rolspan和rowspan

    如图所示啦,容易让初学者混乱的两个东西仔细看看分析下呢,就比较简单了 <table width="300" border="2"> <tr&g ...

  6. yii2 modules模块配置指南

    在Yii2 中模块是可以无限级嵌套的,也就是说,模块可以包含另一个包含模块的模块,我们称前者为父模块,后者为子模块, 子模块必须在父模块的yiibaseModule::modules属性中申明,例如: ...

  7. 20155228 2016-2017-2 《Java程序设计》第6周学习总结

    20155228 2016-2017-2 <Java程序设计>第6周学习总结 教材学习内容总结 输入与输出 在Java中输入串流代表对象为java.io.InputStream实例,输出串 ...

  8. DB2的空间数据库管理复杂配置

    计算机条件: a机器:linux系统           安装arcgis server b机器:windows系统     安装catalog c机器:linux系统           安装DB2 ...

  9. urlopen和urlretrieve

    import urllib import re url = "https://www.duitang.com/search/?kw=%E9%AC%BC%E6%80%AA&type=f ...

  10. Linux系统管理和维护常用命令

    Linux系统管理和维护常用命令 ls 命令 功能说明 ls 命令显示指定工作目录下的内容,列出工作目录所包含的文件及子目录. 语法结构: ls [选项] [路径或文件] ls 选项及说明 -a 显示 ...