题目描述

组合数 Cnm​ 表示的是从 n 个物品中选出 m 个物品的方案数。举个例子,从 (1,2,3) 三个物品中选择两个物品可以有(1,2),(1,3),(2,3) 这三种选择方法。根据组合数的定义,我们可以给出计算组合数 Cnm​ 的一般公式:

Cnm​=m!/(n−m)!n!​

其中n!=1×2×⋯×n;特别地,定义 0!=1。

小葱想知道如果给定 n,m 和 k,对于所有的 0≤i≤n,0≤j≤min(i,m) 有多少对 (i,j) 满足 Cij​ 是 k 的倍数。

输入输出格式

输入格式:

第一行有两个整数 t,k,其中 t代表该测试点总共有多少组测试数据,k 的意义见问题描述。

接下来 t行每行两个整数 n,m,其中 n,m 的意义见问题描述。

输出格式:

共 t 行,每行一个整数代表所有的0≤i≤n,0≤j≤min(i,m) 中有多少对 (i,j) 满足 Cij​ 是 k 的倍数。

输入输出样例

输入样例#1: 复制

1 2
3 3
输出样例#1: 复制

1
输入样例#2: 复制

2 5
4 5
6 7
输出样例#2: 复制

0
7

说明

【样例1说明】

在所有可能的情况中,只有C_2^1 = 2C21​=2是2的倍数。

【子任务】

 #include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
int i,j,n,m,t,k,ans[][],c[][];
void build()
{
c[][] = ;
c[][] = ;
c[][] = ;
for(i = ;i <= ;i++)
{
c[i][] = ;
for(j = ;j <= i;j++)
{
c[i][j] = (c[i - ][j - ] + c[i - ][j]) % k; //第j个选他的可能性和不选他的可能性加在一起
ans[i][j] = ans[i - ][j] + ans[i][j - ] - ans[i - ][j - ];//求前缀和
if(c[i][j] == ) //代表是k的倍数
ans[i][j]++;
ans[i][i + ] = ans[i][i]; //继承
}
}
}
int main()
{
scanf("%d %d",&t,&k);
build();
for(i = ;i <= t;i++)
{
scanf("%d %d",&n,&m);
if(n < m)
printf("%d",ans[n][n]);//在这种情况下最多也只能取到n
else
printf("%d",ans[n][m]);
if(i != t)
printf("\n");
}
return ;
}

*******万恶的组合数,竟然还有前缀和这个操作。

noip2016组合数问题的更多相关文章

  1. Noip2016组合数(数论)

    题目描述 组合数表示的是从n个物品中选出m个物品的方案数.举个例子,从(1,2,3) 三个物品中选择两个物品可以有(1,2),(1,3),(2,3)这三种选择方法.根据组合数的定 义,我们可以给出计算 ...

  2. NOIP2016 组合数问题

    https://www.luogu.org/problem/show?pid=2822 题目描述 组合数表示的是从n个物品中选出m个物品的方案数.举个例子,从(1,2,3) 三个物品中选择两个物品可以 ...

  3. [Noip2016]组合数(数论)

    题目描述 组合数表示的是从n个物品中选出m个物品的方案数.举个例子,从(1,2,3) 三个物品中选择两个物品可以有(1,2),(1,3),(2,3)这三种选择方法.根据组合数的定 义,我们可以给出计算 ...

  4. 2559. [NOIP2016]组合数问题

    [题目描述] [输入格式] 从文件中读入数据. 第一行有两个整数t, k,其中t代表该测试点总共有多少组测试数据,k的意义见[问题描述]. 接下来t行每行两个整数n, m,其中n, m的意义见[问题描 ...

  5. Luogu 2822[NOIP2016] 组合数问题 - 数论

    题解 乱搞就能过了. 首先我们考虑如何快速判断C(i, j ) | k 是否成立. 由于$k$非常小, 所以可以对$k$分解质因数, 接着预处理出前N个数的阶乘的因数中 $p_i$ 的个数, 然后就可 ...

  6. [noip2016]组合数问题<dp+杨辉三角>

    题目链接:https://vijos.org/p/2006 当时在考场上只想到了暴力的做法,现在自己看了以后还是没思路,最后看大佬说的杨辉三角才懂这题... 我自己总结了一下,我不能反应出杨辉三角的递 ...

  7. NOIP 2016 组合数问题

    洛谷 P2822 组合数问题 洛谷传送门 JDOJ 3139: [NOIP2016]组合数问题 D2 T1 JDOJ传送门 Description 组合数Cnm表示的是从n个物品中选出m个物品的方案数 ...

  8. noip 2016提高组D2T1 problem

    我们可以先预处理一下组合数模K的值,然后我们可以发现对于答案ji[n][m],可以发现递推式ji[i][j]=ji[i-1][j]+ji[i][j-1]-ji[i-1][j-1]并对于Cij是否%k等 ...

  9. OI 刷题记录——每周更新

    每周日更新 2016.05.29 UVa中国麻将(Chinese Mahjong,Uva 11210) UVa新汉诺塔问题(A Different Task,Uva 10795) NOIP2012同余 ...

随机推荐

  1. HDU 4821 String(BKDRHash)

    http://acm.hdu.edu.cn/showproblem.php?pid=4821 题意:给出一个字符串,现在问你可以找出多少个长度为M*L的子串,该子串被分成L个段,并且每个段的字符串都是 ...

  2. android获取屏幕宽度和高度

    1. WindowManager wm = (WindowManager) getContext() .getSystemService(Context.WINDOW_SERVICE); int wi ...

  3. Educational Codeforces Round 3 D. Gadgets for dollars and pounds 二分+前缀

    D. Gadgets for dollars and pounds time limit per test 2 seconds memory limit per test 256 megabytes ...

  4. pom中配置的仓库无效的问题

    今天在用spring cloud的时候发现,配置的pom仓库一直无效(官网要求2.0版本直接从指定仓库里下).于是上网搜索,发现(http://18810098265.iteye.com/blog/2 ...

  5. [转][JSBSim]JSBSim的使用--飞行控制组件及其配置

    http://www.jianshu.com/p/b5e9f1f5df95 飞行控制率.稳定增强系统.自动驾驶仪和其他飞控系统(航电.电气等)都能够在 JSBSim 中以独立的控制组件进行建模.JSB ...

  6. 虹软2.0 免费人脸识别C#类库分享

    目前只封装了人脸检测部分的类库,供大家交流学习,肯定有问题,希望大家在阅读使用的时候及时反馈,谢谢!使用虹软技术开发完成 戳这里下载SDKgithub:https://github.com/dayAn ...

  7. 【C#】调用2.0踩过的坑

    1.初始化[DllImport(“libarcsoft_face_engine.dll”, EntryPoint = “ASFInitEngine”, CallingConvention = Call ...

  8. 牛客OI周赛4-提高组 C 战争(war)

    战争(war) 思路: 二分答案, 找到第一个不满足条件的位置 首先对于一个值来说, 所有这个值的区间肯定有交区间, 然后在这个交区间内不能出现比它小的数 所以我们check时从大的值开始考虑, 求出 ...

  9. Ubuntu更改源和搜狗输入法安装卸载

    安装完Ubuntu 16.04后,要更换为国内的软件源: sudo gedit /etc/apt/sources.list   #用文本编辑器打开源列表 在文件开头添加下面的阿里云的软件源: deb ...

  10. python记录_day01 初始

    一.python介绍 python的创始人为吉多·范罗苏姆(Guido van Rossum),人称龟叔.目前python主要应用于web开发.云计算.科学计算.人工智能.系统运维.金融.图形GUI等 ...