Batch Normalization,拆开来看,第一个单词意思是批,出现在梯度下降的概念里,第二个单词意思是标准化,出现在数据预处理的概念里。

我们先来看看这两个概念。

数据预处理

方法很多,后面我会在其他博客中专门讲,这里简单回忆下

归一化,x-min/max-min,

标准化,包括标准差标准化,x-mean/std,极差标准化,x-mean/(max-min),

中心化,x-mean,

白化,pac-->归一化

梯度下降

梯度下降中 mini batch sgd 是比 sgd 更好的一种方法,因为min batch是平均梯度,使得梯度更平稳,容易收敛,而且batch能够并行计算,减少运算。

我们知道,在机器学习中,梯度下降是要归一化的,因为如果不归一化,y在各个维度上的量纲不一样,使得y的图形不规则,扁平或者瘦高,这样在求梯度时经常会歪歪曲曲,一般会陷入局部最优。

图示如下

神经网络也是用的梯度下降,从这点来看,也是需要数据预处理的。

独立同分布 IID

在机器学习中有这个概念,意思是训练数据和测试数据需要服从同样的分布,这样才有意义,很好理解。

但是在深度学习中,训练和测试都是图片(cnn为例,图片为例),似乎不牵扯IID。

那这根batch normalization 有什么关系呢?

因为在神经网络中有层的概念,每一层都有输入,每一层的输入是上一层的输出,而输出是经过非线性函数的,非线性函数的取值都有特定的区间,这就和原始的输入在数据分布上存在很大不同,

此时需要用一定的方法统一数据分布。

神经网络的训练问题

神经网络层数越深,越是难以训练,收敛速度越来越慢,为什么呢?下面我以sigmoid函数为例简要说明。(后面我会专门写一篇激活函数的博客,详细阐述)

在数学建模时一般会要求样本服从正态分布,正态分布标准化后就是标准正态分布。图像如下

可以看到标准正态分布95%的概率落在 [-2, 2] 之间

sigmoid 函数的特点是在绝大多数x上(除了-2到2的区间)取值要么无限接近于1,要么无限接近于0,而且,这种情况下其梯度无限接近于0,这就是神经网络梯度消息的本质,这也是sigmoid函数很难作为深度神经网络的激活函数的原因。

而 batch normalization 的作用是把x规范到0附近,此时其梯度很大,收敛很快。

scale and shift

batch normalization 虽然增加了梯度,但是同时我们发现,当x在0附近时,其函数非常接近于线性,这大大降低了模型的表达能力。

为了解决这个问题,作者又提出了 scale and shift,即y=scale*x+shift,这相当于是把数据从0向左或向右平移了一段并拉伸或压缩,使得y处于线性和非线性的交界处,这样既保证了较大的梯度,也保留了模型的非线性表达能力。

scale 和 shift 通过训练学习到。

到这基本就讲完 batch normalization 的原理了,下面看看具体怎么使用。

使用方法

之前讲到batch normalization使得神经网络每一层的输入变得规范,也就是说它是把 wx+b 变得规范,即用在线性变换之后,非线性变换之前。如图

总体计算方法如下

这里在标准化时分母加了个ε,是防止分母为0。

总结

batch normalization的优点

1. 提高神经网络的训练效率,避免梯度消失

2. 使得神经网络不依赖于初始值,方便调参

3. 抑制过拟合,降低dropout的使用,提高泛化能力

batch normalization的缺点

1. batch normalization 仍然有很多地方科学理论无法解释

2. batch大小对其效果影响很大,batch 很小时,其梯度不够稳定,收敛变慢,极端情况就是 sgd

参考资料:

https://www.cnblogs.com/guoyaohua/p/8724433.html

https://www.zhihu.com/question/38102762

https://blog.csdn.net/whitesilence/article/details/75667002

https://blog.csdn.net/liangjiubujiu/article/details/80977502

Batch Normalization 引出的一系列问题的更多相关文章

  1. 神经网络之 Batch Normalization

    知乎 csdn Batch Normalization 学习笔记 原文地址:http://blog.csdn.net/hjimce/article/details/50866313 作者:hjimce ...

  2. 图像分类(二)GoogLenet Inception_v2:Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift

    Inception V2网络中的代表是加入了BN(Batch Normalization)层,并且使用 2个 3*3卷积替代 1个5*5卷积的改进版,如下图所示: 其特点如下: 学习VGG用2个 3* ...

  3. 转载-通俗理解BN(Batch Normalization)

    转自:参数优化方法 1. 深度学习流程简介 1)一次性设置(One time setup)          -激活函数(Activation functions) - 数据预处理(Data Prep ...

  4. 《RECURRENT BATCH NORMALIZATION》

    原文链接 https://arxiv.org/pdf/1603.09025.pdf Covariate 协变量:在实验的设计中,协变量是一个独立变量(解释变量),不为实验者所操纵,但仍影响实验结果. ...

  5. 【转载】 详解BN(Batch Normalization)算法

    原文地址: http://blog.csdn.net/hjimce/article/details/50866313 作者:hjimce ------------------------------- ...

  6. Tensorflow BatchNormalization详解:4_使用tf.nn.batch_normalization函数实现Batch Normalization操作

    使用tf.nn.batch_normalization函数实现Batch Normalization操作 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考文献 吴恩达deeplearnin ...

  7. Batch Normalization 详解

    一.背景意义 本篇博文主要讲解2015年深度学习领域,非常值得学习的一篇文献:<Batch Normalization: Accelerating Deep Network Training b ...

  8. Batch Normalization详解

    目录 动机 单层视角 多层视角 什么是Batch Normalization Batch Normalization的反向传播 Batch Normalization的预测阶段 Batch Norma ...

  9. 深度学习(二十九)Batch Normalization 学习笔记

    Batch Normalization 学习笔记 原文地址:http://blog.csdn.net/hjimce/article/details/50866313 作者:hjimce 一.背景意义 ...

随机推荐

  1. Cause: com.mysql.jdbc.exceptions.jdbc4.MySQLSyntaxErrorException: ..... this is incompatible with sql_mode=only_full_group_by

    一.异常信息 org.springframework.jdbc.BadSqlGrammarException: ### Error querying database. Cause: com.mysq ...

  2. TF-IDF的解释

    转自:http://www.cnblogs.com/gongxijun/p/8673241.html TF(词频):  假定存在一份有N个词的文件A,其中‘明星‘这个词出现的次数为T.那么 TF = ...

  3. Python实现一条基于POS算法的区块链

    区块链中的共识算法 在比特币公链架构解析中,就曾提到过为了实现去中介化的设计,比特币设计了一套共识协议,并通过此协议来保证系统的稳定性和防攻击性. 并且我们知道,截止目前使用最广泛,也是最被大家接受的 ...

  4. linux bash基本特性

    一.bash 基础特性 (1)命令历史的功能 history: 环境变量 HISTSIZE:命令历史记录的条数 HISTFILE: ~/.bash_history 每个用户都有自己独立的命令历史文件 ...

  5. 小程序for循环嵌套

    <view class='nocontnt' wx:if="{{listLength == 0 }}"> 暂无相关评论 </view> <view c ...

  6. 04 爬虫数据存储之Mongodb

    MongoDB 认识MongoDB MongoDB是一个基于分布式文件存储的数据库.由C++语言编写.旨在为WEB应用提供可扩展的高性能数据存储解决方案.MongoDB是一个介于关系数据库和非关系数据 ...

  7. Alyona and a tree CodeForces - 739B (线段树合并)

    大意: 给定有根树, 每个点$x$有权值$a_x$, 对于每个点$x$, 求出$x$子树内所有点$y$, 需要满足$dist(x,y)<=a_y$. 刚开始想错了, 直接打线段树合并了..... ...

  8. loj#6491. zrq 学反演

    题意:求\(\sum_{i_1=1}^m\sum_{i_2=1}^m...\sum_{i_n=1}^mgcd(i_1,i_2,...i_n)\) 题解:\(\sum_{d=1}^md\sum_{i_1 ...

  9. 338. Counting Bits_比特位计数_简单动态规划

    https://leetcode.com/problems/counting-bits/ 这是初步了解动态规划后做的第一道题,体验还不错... 看完题目要求后,写出前10个数的二进制数,发现了以下规律 ...

  10. 常用加密算法简单整理以及spring securiy使用bcrypt加密

    一.哈希加密 1.md5加密 Message Digest Algorithm MD5(中文名为消息摘要算法第五版) https://baike.baidu.com/item/MD5/212708?f ...