ReentrantLock是什么?

  1. ReentrantLock重入锁,递归无阻塞的同步机制,实现了Lock接口;
  1. 能够对共享资源重复加锁,即当前线程获取该锁,再次获取不会被阻塞;
  1. 支持公平锁和非公平锁。

UML图

  1. 公平锁
 
   2.非公平锁
 

问题:

    1. 重入性的实现原理;
    1. 公平和非公平锁。

ReentrantLock的使用

//非公平锁
ReentrantLock lock = new ReentrantLock();
lock.lock();
//lock方法:
public void lock() {
sync.lock();
}
注释:
  1. Sync为ReentrantLock里面的一个内部类,它继承AQS(AbstractQueuedSynchronizer),它有两个子类:公平锁FairSync和非公平锁NonfairSync。
  1. ReentrantLock里面大部分的功能都是委托给Sync来实现的,同时Sync内部定义了lock()抽象方法由其子类去实现,默认实现了nonfairTryAcquire(int acquires)方法,可以看出它是非公平锁的默认实现方式。下面我们看非公平锁的lock()方法:
final void lock() {
//尝试获取锁
if (compareAndSetState(0, 1))
setExclusiveOwnerThread(Thread.currentThread());
else
//获取失败,调用AQS的acquire(int arg)方法
acquire(1);
}
  1. 首先会第一次尝试快速获取锁,如果获取失败,则调用acquire(int arg)方法,该方法定义在AQS中,如下:
public final void acquire(int arg) {
if (!tryAcquire(arg) &&
acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
selfInterrupt();
}
  1. 这个方法首先调用tryAcquire(int arg)方法,在AQS中讲述过,tryAcquire(int arg)需要自定义同步组件提供实现,非公平锁实现如下:
protected final boolean tryAcquire(int acquires) {
return nonfairTryAcquire(acquires);
} final boolean nonfairTryAcquire(int acquires) {
//当前线程
final Thread current = Thread.currentThread();
//获取同步状态
int c = getState();
//state == 0,表示没有该锁处于空闲状态
if (c == 0) {
//获取锁成功,设置为当前线程所有
if (compareAndSetState(0, acquires)) {
setExclusiveOwnerThread(current);
return true;
}
}
//线程重入
//判断锁持有的线程是否为当前线程
else if (current == getExclusiveOwnerThread()) {
int nextc = c + acquires;
if (nextc < 0) // overflow
throw new Error("Maximum lock count exceeded");
setState(nextc);
return true;
}
return false;
}

释放锁

  1. 获取同步锁后,使用完毕则需要释放锁,ReentrantLock提供了unlock释放锁:
 public void unlock() {
sync.release(1);
}
  1. unlock内部使用Sync的release(int arg)释放锁,release(int arg)是在AQS中定义的:
public final boolean release(int arg) {
if (tryRelease(arg)) {
Node h = head;
if (h != null && h.waitStatus != 0)
unparkSuccessor(h);
return true;
}
return false;
}
  1. 与获取同步状态的acquire(int arg)方法相似,释放同步状态的tryRelease(int arg)同样是需要自定义同步组件自己实现:
protected final boolean tryRelease(int releases) {
//减掉releases
int c = getState() - releases;
//如果释放的不是持有锁的线程,抛出异常
if (Thread.currentThread() != getExclusiveOwnerThread())
throw new IllegalMonitorStateException();
boolean free = false;
//state == 0 表示已经释放完全了,其他线程可以获取同步状态了
if (c == 0) {
free = true;
setExclusiveOwnerThread(null);
}
setState(c);
return free;
}

只有当同步状态彻底释放后该方法才会返回true。当state == 0 时,则将锁持有线程设置为null,free= true,表示释放成功。

重入性的实现原理
  1. 在线程获取锁时,如果已经获取锁的线程是当前线程,则直接再次获取成功;
  1. 锁会被获取n次,只有锁在被释放同样n次之后,该锁才会被完全释放。
重入锁--非公平锁--加锁的实现原理
/**
* Performs non-fair tryLock. tryAcquire is implemented in
* subclasses, but both need nonfair tryfor trylock method.
*/
final boolean nonfairTryAcquire(int acquires) {
final Thread current = Thread.currentThread();
int c = getState();
// 如果该锁未被任何线程占有,该锁能被当前线程获取
if (c == 0) {
if (compareAndSetState(0, acquires)) {
setExclusiveOwnerThread(current);
return true;
}
}
//如果该锁被占有,检查占有线程是否是当前线程
else if (current == getExclusiveOwnerThread()) {
//如果是当前线程,再次获取,计数加一
int nextc = c + acquires;
if (nextc < 0) // overflow
throw new Error("Maximum lock count exceeded");
setState(nextc);
return true;
}
return false;
}

注释:如果该锁未被任何线程占有,该锁能被当前线程获取,如果该锁被占有,检查占有线程是否是当前线程,如果是的话,同步状态加一并返回true。

 

重入锁--非公平锁--解锁的实现原理

源代码java.util.concurrent.locks.ReentrantLock.Sync#nonfairTryAcquire
protected final boolean tryRelease(int releases) {
//当前线程的同步状态减一
int c = getState() - releases;
if (Thread.currentThread() != getExclusiveOwnerThread())
throw new IllegalMonitorStateException();
boolean free = false;
if (c == 0) {
//只用同步状态为0的时候,锁才能释放成功,返回true
free = true;
setExclusiveOwnerThread(null);
}
//当锁未完全释放,返回false
setState(c);
return free;
}

注释:

当前线程的同步状态减一, 只用同步状态为0的时候,锁才能释放成功,返回true, 当锁未完全释放,返回false。
公平性锁
锁的获取顺序符合请求上的绝对时间顺序,满足FIFO,
  1. ReentrantLock的构造方法,无参时是构造非公平锁,源码为:
/**
* Creates an instance of {@code ReentrantLock}.
* This is equivalent to using {@code ReentrantLock(false)}.
*/
public ReentrantLock() {
sync = new NonfairSync();
}
  1. ReentrantLock的构造方法,带boolean参数,可传入一个boolean值,true时为公平锁,false时为非公平锁,源码为:
/**
* Creates an instance of {@codeReentrantLock} with the
* given fairness policy.
*
* @paramfair {@codetrue} ifthis lock should use a fair ordering policy
*/
public ReentrantLock(boolean fair) {
sync = fair ? new FairSync() : new NonfairSync();
}

重入锁--公平锁--加锁的实现原理

源代码:java.util.concurrent.locks.ReentrantLock.FairSync#tryAcquire
/**
* Fair version of tryAcquire. Don't grant access unless
* recursive call or no waiters or is first.
*/
protected final boolean tryAcquire(int acquires) {
final Thread current = Thread.currentThread();
int c = getState();
if (c == 0) {
if (!hasQueuedPredecessors() &&
compareAndSetState(0, acquires)) {
setExclusiveOwnerThread(current);
return true;
}
}
else if (current == getExclusiveOwnerThread()) {
int nextc = c + acquires;
if (nextc < 0)
throw new Error("Maximum lock count exceeded");
setState(nextc);
return true;
}
return false;
}

注释:

public final boolean hasQueuedPredecessors() {
Node t = tail; //尾节点
Node h = head; //头节点
Node s; //头节点 != 尾节点
//同步队列第一个节点不为null
//当前线程是同步队列第一个节点
return h != t &&
((s = h.next) == null || s.thread != Thread.currentThread());
}
//该方法主要做一件事情:主要是判断当前线程是否位于CLH同步队列中的第一个。如果是则返回true,否则返回false。
  1. 代码和非公平锁基本一直,唯一的不同在于增加了hasQueuedPredecessors的逻辑判断。该方法用来判断当前节点在同步队列中是否有前驱节点。如果有前驱节点说明有线程比当前线程更早的请求资源,根据公平性,当前线程请求资源失败。如果当前节点没有前驱节点,猜能够做后面的逻辑判断,
  1. 公平锁每次都是从同步队列中的对一个节点获取到锁,而非公平性锁则不一定,有可能刚释放锁的线程能够再次获取到锁。
公平锁和非公平锁的比较
  1. 公平锁每次获取到锁为同步队列中的第一个节点,保证请求资源时间上的绝对顺序,而非公平锁有可能刚释放锁的线程下次继续获取该锁,则有可能导致其他线程永远无法获取到锁,造成“饥饿”现象。
  1. 公平锁为了保证时间上的绝对顺序,需要频繁的上下文切换,而非公平锁会降低一定的上下文切换,降低性能开销。因此,ReentrantLock默认选择的是非公平锁,则是为了减少一部分上下文切换,保证了系统更大的吞吐量。
 
 
参考链接:
  1. https://www.javazhiyin.com/15047.html
  1. https://www.javazhiyin.com/6265.html

Java并发--ReentrantLock原理详解的更多相关文章

  1. java并发编程 | 锁详解:AQS,Lock,ReentrantLock,ReentrantReadWriteLock

    原文:java并发编程 | 锁详解:AQS,Lock,ReentrantLock,ReentrantReadWriteLock 锁 锁是用来控制多个线程访问共享资源的方式,java中可以使用synch ...

  2. Java并发关键字Volatile 详解

    Java并发关键字Volatile 详解 问题引出: 1.Volatile是什么? 2.Volatile有哪些特性? 3.Volatile每个特性的底层实现原理是什么? 相关内容补充: 缓存一致性协议 ...

  3. java的ReentrantLock类详解

    ReentrantLock 能用于更精细化的加锁的Java类, 通过它能更清楚了解Java的锁机制 ReentrantLock 类的集成关系有点复杂, 既有内部类, 还有多重继承关系 类的定义 pub ...

  4. JAVA线程池原理详解二

    Executor框架的两级调度模型 在HotSpot VM的模型中,JAVA线程被一对一映射为本地操作系统线程.JAVA线程启动时会创建一个本地操作系统线程,当JAVA线程终止时,对应的操作系统线程也 ...

  5. Java虚拟机工作原理详解 (一)

    一.类加载器 首先来看一下java程序的执行过程. 从这个框图很容易大体上了解java程序工作原理.首先,你写好java代码,保存到硬盘当中.然后你在命令行中输入 javac YourClassNam ...

  6. Java虚拟机工作原理详解

    原文地址:http://blog.csdn.net/bingduanlbd/article/details/8363734 一.类加载器 首先来看一下java程序的执行过程. 从这个框图很容易大体上了 ...

  7. java并发编程 | 线程详解

    个人网站:https://chenmingyu.top/concurrent-thread/ 进程与线程 进程:操作系统在运行一个程序的时候就会为其创建一个进程(比如一个java程序),进程是资源分配 ...

  8. [转]java虚拟机工作原理详解

    一.类加载器 首先来看一下java程序的执行过程. 从这个框图很容易大体上了解java程序工作原理.首先,你写好java代码,保存到硬盘当中.然后你在命令行中输入 javac YourClassNam ...

  9. JAVA线程池原理详解一

    线程池的优点 1.线程是稀缺资源,使用线程池可以减少创建和销毁线程的次数,每个工作线程都可以重复使用. 2.可以根据系统的承受能力,调整线程池中工作线程的数量,防止因为消耗过多内存导致服务器崩溃. 线 ...

随机推荐

  1. SQL——MySQL数据类型

    Text类型: Number类型: Date类型:

  2. Collection接口和list,set子类

    Collection接口常用的子接口有:List接口.Set接口List接口常用的子类有:ArrayList类.LinkedList类Set接口常用的子类有:HashSet类.LinkedHashSe ...

  3. uiautomator2通过wifi操作手机

    参考来源:https://www.cnblogs.com/c-x-a/p/11176066.html,有部分不适合当前版本的做了修改 1.手机通过USB连接电脑,先开启远程adb模式,操作如下(可以指 ...

  4. 剑指Offer之跳台阶

    题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果). 解法1:递归解法 public int JumpFloor(int t ...

  5. Python学习之路【第一篇】:Python简介与入门

    Python简介 一.什么是Python Python 是一个高层次的结合了解释性.编译性.互动性和面向对象的脚本语言. Python 的设计具有很强的可读性,相比其他语言经常使用英文关键字,其他语言 ...

  6. [Android应用开发] 03.网络编程

    *:first-child { margin-top: 0 !important; } body > *:last-child { margin-bottom: 0 !important; } ...

  7. Vulnerability of SSL to Chosen-Plaintext Attack 读书报告

    这篇文章讲述了在SSL上的选择明文攻击.我想分四个部分讲讲我对这篇文章的理解. 1.CPA的定义: 2.文章讲述SSL相关基本概念漏洞: 3.对SSL的CPA攻击的过程: 4.实现这种攻击的可能性以及 ...

  8. 开心一下-实现基于Java一个中文编程语言

    https://mp.weixin.qq.com/s/TsTiLVF5D07-wbDMk9bsyQ   这不是认真的,不是真的要去实现一个中文编程语言.   多年以前,有位同学把Java代码发给我说帮 ...

  9. Java实现 LeetCode 40 组合总和 II(二)

    40. 组合总和 II 给定一个数组 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合. candidates 中的每个数字在 ...

  10. java实现黄金队列

    ** 黄金队列** 黄金分割数0.618与美学有重要的关系.舞台上报幕员所站的位置大约就是舞台宽度的0.618处,墙上的画像一般也挂在房间高度的0.618处,甚至股票的波动据说也能找到0.618的影子 ...