#----------------------------------------#
# R in Action (2nd ed): Chapter 10 #
# Power analysis #
# requires packages pwr to be installed #
# install.packages("pwr") #
#----------------------------------------# par(ask=TRUE) library(pwr) # t tests
pwr.t.test(d=.8, sig.level=.05,power=.9, type="two.sample",
alternative="two.sided")
pwr.t.test(n=20, d=.5, sig.level=.01, type="two.sample",
alternative="two.sided") # ANOVA
pwr.anova.test(k=5,f=.25,sig.level=.05,power=.8) # Correlations
pwr.r.test(r=.25, sig.level=.05, power=.90, alternative="greater") # Linear Models
pwr.f2.test(u=3, f2=0.0769, sig.level=0.05, power=0.90) # Tests of proportions
pwr.2p.test(h=ES.h(.65, .6), sig.level=.05, power=.9,
alternative="greater") # Chi-square tests
prob <- matrix(c(.42, .28, .03, .07, .10, .10), byrow=TRUE, nrow=3)
ES.w2(prob)
pwr.chisq.test(w=.1853, df=3 , sig.level=.05, power=.9) # Listing 10.1 - Sample sizes for detecting significant effects in a One-Way ANOVA
es <- seq(.1, .5, .01)
nes <- length(es)
samsize <- NULL
for (i in 1:nes){
result <- pwr.anova.test(k=5, f=es[i], sig.level=.05, power=.9)
samsize[i] <- ceiling(result$n)
}
plot(samsize,es, type="l", lwd=2, col="red",
ylab="Effect Size",
xlab="Sample Size (per cell)",
main="One Way ANOVA with Power=.90 and Alpha=.05") # Listing 10.2 - Sample size curves for dtecting corelations of various sizes
library(pwr)
r <- seq(.1,.5,.01)
nr <- length(r)
p <- seq(.4,.9,.1)
np <- length(p)
samsize <- array(numeric(nr*np), dim=c(nr,np))
for (i in 1:np){
for (j in 1:nr){
result <- pwr.r.test(n = NULL, r = r[j],
sig.level = .05, power = p[i],
alternative = "two.sided")
samsize[j,i] <- ceiling(result$n)
}
}
xrange <- range(r)
yrange <- round(range(samsize))
colors <- rainbow(length(p))
plot(xrange, yrange, type="n",
xlab="Correlation Coefficient (r)",
ylab="Sample Size (n)" )
for (i in 1:np){
lines(r, samsize[,i], type="l", lwd=2, col=colors[i])
}
abline(v=0, h=seq(0,yrange[2],50), lty=2, col="grey89")
abline(h=0, v=seq(xrange[1],xrange[2],.02), lty=2, col="gray89")
title("Sample Size Estimation for Correlation Studies\n
Sig=0.05 (Two-tailed)")
legend("topright", title="Power", as.character(p),
fill=colors)

吴裕雄--天生自然 R语言开发学习:功效分析的更多相关文章

  1. 吴裕雄--天生自然 R语言开发学习:R语言的安装与配置

    下载R语言和开发工具RStudio安装包 先安装R

  2. 吴裕雄--天生自然 R语言开发学习:数据集和数据结构

    数据集的概念 数据集通常是由数据构成的一个矩形数组,行表示观测,列表示变量.表2-1提供了一个假想的病例数据集. 不同的行业对于数据集的行和列叫法不同.统计学家称它们为观测(observation)和 ...

  3. 吴裕雄--天生自然 R语言开发学习:导入数据

    2.3.6 导入 SPSS 数据 IBM SPSS数据集可以通过foreign包中的函数read.spss()导入到R中,也可以使用Hmisc 包中的spss.get()函数.函数spss.get() ...

  4. 吴裕雄--天生自然 R语言开发学习:使用键盘、带分隔符的文本文件输入数据

    R可从键盘.文本文件.Microsoft Excel和Access.流行的统计软件.特殊格 式的文件.多种关系型数据库管理系统.专业数据库.网站和在线服务中导入数据. 使用键盘了.有两种常见的方式:用 ...

  5. 吴裕雄--天生自然 R语言开发学习:R语言的简单介绍和使用

    假设我们正在研究生理发育问 题,并收集了10名婴儿在出生后一年内的月龄和体重数据(见表1-).我们感兴趣的是体重的分 布及体重和月龄的关系. 可以使用函数c()以向量的形式输入月龄和体重数据,此函 数 ...

  6. 吴裕雄--天生自然 R语言开发学习:基础知识

    1.基础数据结构 1.1 向量 # 创建向量a a <- c(1,2,3) print(a) 1.2 矩阵 #创建矩阵 mymat <- matrix(c(1:10), nrow=2, n ...

  7. 吴裕雄--天生自然 R语言开发学习:图形初阶(续二)

    # ----------------------------------------------------# # R in Action (2nd ed): Chapter 3 # # Gettin ...

  8. 吴裕雄--天生自然 R语言开发学习:图形初阶(续一)

    # ----------------------------------------------------# # R in Action (2nd ed): Chapter 3 # # Gettin ...

  9. 吴裕雄--天生自然 R语言开发学习:图形初阶

    # ----------------------------------------------------# # R in Action (2nd ed): Chapter 3 # # Gettin ...

  10. 吴裕雄--天生自然 R语言开发学习:基本图形(续二)

    #---------------------------------------------------------------# # R in Action (2nd ed): Chapter 6 ...

随机推荐

  1. 吴裕雄--天生自然TensorFlow2教程:Tensor数据类型

    list: [1,1.2,'hello'] ,存储图片占用内存非常大 np.array,存成一个静态数组,但是numpy在深度学习之前就出现了,所以不适合深度学习 tf.Tensor,为了弥补nump ...

  2. UML-类图-关联

  3. python全局灰度线性变换——自由设定图像灰度范围

    全局线性变换的公式是s = (r-a)*(d-c)/(b-a)+c,其中a.b是原图片的灰度最小值和最大值,c.d是变换后的灰度值的最小值和最大值.r是当前像素点的灰度值,s是当前像素点变换后的灰度值 ...

  4. 九、Shell脚本高级编程实战第九部

    一.监控mysql主从同步是否异常,如果异常,发送短信给管理员 1)开发一个守护进程脚本每30秒实现检测一次. 2)如果错误号是:1158.1159.1008.1007.1062,请跳过 3)请使用数 ...

  5. [Algo] 397. Right Shift By N Characters

    Right shift a given string by n characters. Assumptions The given string is not null. n >= 0. Exa ...

  6. metinfo_5.3变量覆盖引发的一系列问题

    metinfo_5.3中存在一个很经典的$$型变量覆盖,这种变量覆盖在之前的博客中提到过,今天的博客围绕这个变量覆盖漏洞结合这款CMS的其他功能进行漏洞利用. 变量覆盖+文件包含 拿到这个CMS首先还 ...

  7. JavaScript 的数据结构与算法

    1数组 1.1方法列表 数组的常用方法如下: concat: 链接两个或者更多数据,并返回结果. every: 对数组中的每一项运行给定的函数,如果该函数对每一项都返回true,则返回true. fi ...

  8. JSP和EL和JSTL

    什么是JSP Java Server Page的缩写从用户角度看待,就是一个网页从程序员角度看待,其实是一个java类,它继承了Servlet,所以可以直接说jsp就是一个Servlet 为什么会有J ...

  9. 0x06 - Nginx 负载均衡会话保持

    Nginx 负载均衡会话保持 背景 负载均衡时,如果APP需要保持特定状态的时候,就要保证同一用户的 session 会被分配到同一台服务器上. 实现方案 使用cookie 将用户的 session ...

  10. 电影画面赏析_唐顿庄园S01E01

    唐顿庄园S01E01 1. 2. 3. 4. 5. 6. 7. 8.