[POI2017]bzoj4726 Sadota?
题目描述
题目描述
某个公司有\(n\)个人, 上下级关系构成了一个有根树。其中有个人是叛徒(这个人不知道是谁)。对于一个人, 如果他
下属(直接或者间接, 不包括他自己)中叛徒占的比例超过\(x\),那么这个人也会变成叛徒,并且他的所有下属都会变
成叛徒。你要求出一个最小的\(x\),使得最坏情况下,叛徒的个数不会超过\(k\)。
输入格式
第一行包含两个正整数\(n,k(1<=k<=n<=500000)\)。
接下来\(n-1\)行,第\(i\)行包含一个正整数\(p[i+1]\),表示\(i+1\)的父亲是\(p[i+1](1<=p[i+1]<=i)\)。
输出格式
输出一行一个实数\(x\),误差在\(10^-6\)以内都被认为是正确的。
自己想出来的\(QWQ\),刚开始想的是二分\(+dp\),但是最后搞出来的方程发现和题解差不多
题解
思路细想的话非常绕!!!不细想的话随便搞搞也能出来
首先考虑这么两个事儿
- 最坏情况一定是子节点是第一个叛徒;
因为假如某节点\(i\)变成叛徒,他的父亲\(fa\)不会受影响,那么他的叶节点\(leaf\)变成叛徒,反而可能把以\(i\)为根的子树全变成叛徒,创造更多的叛徒,甚至把\(fa\)也变成叛徒 - 最坏情况一定是一棵子树全部是叛徒,而不会出现森林;
我们考虑树上\(dp\)
首先统计出子树\(i\)的大小
那么让这颗子树变成叛徒的条件是什么呢,宁先想着,我待会儿和宁说
一个子树变成叛徒的边界条件是啥呢,就是求使当前子树变成叛徒的最大\(x\),\(x\)再大一点点就不行了,我们把这个稍微大一点点的\(x\)叫做\(x_1\),而我们求的是不让子树大小大于\(k\)的\(x\)的最小值,宁想一想这俩东西的关系
可以发现我们要求的答案就是所有大小大于\(k\)的子树的\(x_1\)的最大值,又因为是稍微大一点点,所以我们想成一样大
然后就可以\(dp\)了
此时回到上面的问题,让一颗子树变成叛徒的条件就是有一棵他的儿子叛变,而且以儿子为根的子树的大小在可以整棵子树所占的比例大于等于当前节点叛变要求的\(x\)
这俩条件需要同时满足,所以我们求其中的较小值,即以下
minn = min( dp[son], 1.0 * siz[v] / ( siz[now] - 1 ) ) // 注意乘1.0,如果( double )转高精的话取完min就会变成0,我WA了一上午
然后我们在它的每棵子树的\(minn\)中取一个最大值就是当前节点恰好叛变的\(x\),也是恰好不叛变的值
最后在每个大小大于\(k\)的子树的\(dp\)里取个最大值,就是恰好不让所有的大于\(k\)的子树叛变的\(x\)即答案
#include<bits/stdc++.h>
using namespace std;
#define rint register int
int n, k;
int b[500010];
double dp[500010], ans;
vector< int > vec[500010];
inline int read( void ){
int re = 0, f = 1; char ch = getchar();
while( ch > '9' || ch < '0' ){
if( ch == '-' ) f = -1;
ch = getchar();
}
while( ch >= '0' && ch <= '9' ){
re = re * 10 + ch - '0';
ch = getchar();
}
return re * f;
}
inline void dfs( int now ){
b[now] = 1;
for( rint i = 0; i < vec[now].size(); i++ ){
int v = vec[now][i];
dfs( v );
b[now] += b[v];
}
dp[now] = ( b[now] == 1 );
if( b[now] != 1 ){
for( rint i = 0; i < vec[now].size(); i++ ){
int v = vec[now][i];
dp[now] = fmax( dp[now], fmin( dp[v], 1.0 * b[v] / ( b[now] - 1 ) ) );
}
}
if( b[now] > k ){
ans = max( ans, dp[now] );
}
}
int main( void ){
n = read(); k = read();
for( rint i = 2; i <= n; i++ ){
int u; u = read();
vec[u].push_back( i );
}
dfs( 1 );
cout << ans;
return 0;
}
[POI2017]bzoj4726 Sadota?的更多相关文章
- 【POI2017||bzoj4726】Sabota?
上学期putsnan过了一次,这学期认真写了一遍…… #include<bits/stdc++.h> #define N 500010 using namespace std; ]; ,n ...
- 【POI2017||bzoj4726】Flappy Birds
外国人很良心的啊,这题比NOIP那题还简单…… 不用管他最后的位置,因为移动的次数肯定是恒定的,所以维护在每一个柱子的位置能飞到的范围,递推下去即可. #include<bits/stdc++. ...
- 【BZOJ4726】[POI2017]Sabota? 树形DP
[BZOJ4726][POI2017]Sabota? Description 某个公司有n个人, 上下级关系构成了一个有根树.其中有个人是叛徒(这个人不知道是谁).对于一个人, 如果他 下属(直接或者 ...
- bzoj4726【POI2017】Sabota?
首先可以推出来如果i没有带头叛变,那么i的父亲也一定不会带头叛变,证明显然 所以最劣情况初始的叛徒肯定是叶子,并且带头叛变的人一定是从某个叶子往上走一条链 f[i]表示i不带头叛变的话最小的x 那么我 ...
- 【树形dp】bzoj4726: [POI2017]Sabota?
找点概率期望的题做一做 Description 某个公司有n个人, 上下级关系构成了一个有根树.其中有个人是叛徒(这个人不知道是谁).对于一个人, 如果他 下属(直接或者间接, 不包括他自己)中叛徒占 ...
- BZOJ4726: [POI2017]Sabota?
$n \leq 500000$的树,开始有一个点是坏的,如果一个子树中坏点比例(不包括根节点)超过x那这整棵子树就会变坏,问最坏情况下不超过$K$个坏点的情况下$x$最小是多少. 被坑成傻逼.. 可以 ...
- [bzoj4726][POI2017][Sabota?] (树形dp)
Description 某个公司有n个人, 上下级关系构成了一个有根树.其中有个人是叛徒(这个人不知道是谁).对于一个人, 如果他 下属(直接或者间接, 不包括他自己)中叛徒占的比例超过x,那么这个人 ...
- BZOJ 4726: [POI2017]Sabota?
4726: [POI2017]Sabota? Time Limit: 20 Sec Memory Limit: 128 MBSec Special JudgeSubmit: 301 Solved ...
- 【BZOJ-4726】Sabota? 树形DP
4726: [POI2017]Sabota? Time Limit: 20 Sec Memory Limit: 128 MBSec Special JudgeSubmit: 128 Solved ...
随机推荐
- Nginx笔记总结十六:nginx优化指南
1.高层的配置 worker_processes 定义了nginx对外提供web服务时的worker进程数 worker_rlimit_nofile 更改worker进程最大打开文件数量限制,如果没有 ...
- Python练习 ——名片管理系统(增添,删除,查找,修改)
需要注意的一个地方是,如果你用的版本是3.6的,那么下面的用到的所有从外界接收信息所用到的input()用input()就行了,如果是2.7版本,那么如果接收的是字符串要用raw_input()(将接 ...
- POJ 2553 The Bottom of a Graph Tarjan找环缩点(题解解释输入)
Description We will use the following (standard) definitions from graph theory. Let V be a nonempty ...
- angular jspaf
import { Component, OnInit } from '@angular/core'; import * as jsPDF from 'jspdf'; import html2canva ...
- <JZOJ4269>挑竹签
emm一开始将++cnt敲成cnt++ 就很委屈 一个拓扑排序而已 Description 挑竹签——小时候的游戏 夏夜,早苗和诹访子在月光下玩起了挑竹签这一经典的游戏.挑竹签,就是在桌上摆上一把竹签 ...
- Memcached笔记——(二)XMemcached&Spring集成
今天研究Memcached的Java的Client,使用XMemcached 1.3.5,做个简单的测试,并介绍如何与Spring集成. 相关链接: Memcached笔记--(一)安装&常规 ...
- python Select\Poll\Epoll异步IO与事件驱动
参考:http://www.cnblogs.com/alex3714/articles/5248247.html 写服务器处理模型的程序时通常采用的模型: (1)每收到一个请求,创建一个新的进程,来处 ...
- Job Shop
flow shop: 如果每个作业需要在每个处理机上加工,而且每个作业的工序也相同,即在处理机上加工的顺序相同,则这种多类机的环境称为同顺序作业或流水作业. job shop: 如果每个作业需要在每个 ...
- Ubuntu18.04安装OpenStack
Ubuntu18.04 安装Queens版本OpenStack 安装环境 系统 系统使用的是Ubuntu18,最少4核8G内存,20G硬盘空间. 工具 devstack DevStack是一系列可扩展 ...
- 银行储蓄程序(C++,simple)
*/ * Copyright (c) 2016,烟台大学计算机与控制工程学院 * All rights reserved. * 文件名:text.cpp * 作者:常轩 * 微信公众号:Worldhe ...