超越Mask-RCNN:谷歌大脑的AI,自己写了个目标检测AI
这是一只AI生出的小AI。
谷歌大脑的Quoc Le团队,用神经网络架构搜索 (NAS) ,发现了一个目标检测模型。长这样:
△ 看不清请把手机横过来
它的准确率和速度都超过了大前辈Mask-RCNN;也超过了另外两只行业精英:FPN和SSD。
模型叫做NAS-FPN。大佬Quoc Le说,它的长相完全在想象之外,十分前卫:
△ 喜讯发布一日,已收获600颗心
AI的脑洞果然和人类不一样。对比一下,目标检测界的传统方法FPN (特征金字塔网络) 长这样:
谷歌大脑说,虽然网络架构搜索 (NAS) 并不算新颖,但他们用的搜索空间与众不同。
怎么搜出来?
在NAS-FPN出现之前,地球上最强大的目标检测模型,架构都是人类手动设计的。
△ 这是Mask-RCNN的成果
NAS是一种自动调参的方法,调的不是训练超参数,是网络架构超参数:比如网络多少层、每层都是什么算子、卷积层里的过滤器大小等等。
它可以在许多许多不同的架构里,快速找到性能最好的那一个。
所以,要把目标检测的常用架构FPN (特征金字塔网络) 和NAS结合起来,发现那只最厉害的AI。
但问题是搜索空间太大,特征横跨许多不同的尺度。
于是,团队基于RetinaNet框架,设计了一个新的搜索空间:
这里,一个FPN是由许多的“合并单元 (Merging Cells) ”组成的。
是要把输入的不同尺度/分辨率的特征层,合并到RetinaNet的表征里去。
具体怎样合并?这是由一个RNN控制器来决定的,经过四个步骤:
一是,从输入里任选一个特征层;
二是,从输入里再选一个特征层;
三是,选择输出的特征分辨率;
四是,选择一种二进制运算,把两个特征层 (用上一步选定的分辨率) 合并起来。
第四步有两种运算可选,一种是加和 (sum) ,一种是全局池化 (Global Pooling) 。两个都是简单、高效的运算,不会附加任何带训练的参数。
一个Cell就这样合并出来了,但这只是中间结果。把它加到刚才的输入列表里,和其他特征层排在一起。
然后,就可以重新选两个特征层,重复上面的步骤一、二、四,保持分辨率不变。
和4是比较合适的步长。)
就这样,不停地生成新的Cell。
停止搜索的时候,最后生成的5个Cell,会组成“被选中的FPN”出道。
那么问题来了,搜索什么时候能停?
不是非要全部搜索完,随时都可以退出。反正分辨率是不变的,FPN是可以随意扩展的。
团队设定了Early Exit (提前退出) 机制,用来权衡速度和准确率。
最终发布NAS-FPN的,是AI跑了8,000步之后,选取最末5个Cell生成的网络。回顾一下:
△ 看不清请把手机横过来
从原始FPN (下图a) 开始,它走过的路大概是这样的:
跑得越久,生成的网络就越蜿蜒。
模型怎么样?
NAS-FPN可以依托于各种骨架:MobileNet,ResNet,AmoebaNet……
团队选择的是AmoebaNet骨架。
那么,用COCO test-dev数据集,和那些强大的前辈比一比高清大图检测效果。
比赛结果发布:
△ 看不清请把手机横过来
NAS-FPN拿到了48.3的AP分,超过了Mask-RCNN,并且用时更短 (右边第二列是时间) 。
另外一场比赛,是移动检测 (320x320) ,NAS-FPN的轻量版本,跑在MobileNet2骨架上:
超过了厉害的前辈SSD轻量版,虽然,还是没有赶上YOLOv3。
△ YOLOv3过往成果展
不过,打败Mask-RCNN已经是值得庆祝的成就了。
One More Thing
NAS既然如此高能,应该已经搜索过很多东西了吧?
谷歌大脑的另一位成员David Ha列出了7种:
1) 基于CNN的图像分类器,2) RNN,3) 激活函数,4) SGD优化器,5) 数据扩增,6) Transformer,7) 目标检测。
并发射了直击灵魂的提问:下一个被搜的会是什么?
他的同事摘得了最佳答案:NAS啊。
△ NAS
论文传送门:
https://arxiv.org/pdf/1904.07392.pdf
作者系网易新闻·网易号“各有态度”签约作者
— 完 —
欢迎关注磐创博客资源汇总站:http://docs.panchuang.net/
欢迎关注PyTorch官方中文教程站:http://pytorch.panchuang.net/
超越Mask-RCNN:谷歌大脑的AI,自己写了个目标检测AI的更多相关文章
- AI佳作解读系列(二)——目标检测AI算法集杂谈:R-CNN,faster R-CNN,yolo,SSD,yoloV2,yoloV3
1 引言 深度学习目前已经应用到了各个领域,应用场景大体分为三类:物体识别,目标检测,自然语言处理.本文着重与分析目标检测领域的深度学习方法,对其中的经典模型框架进行深入分析. 目标检测可以理解为是物 ...
- 谷歌大脑提出:基于NAS的目标检测模型NAS-FPN,超越Mask R-CNN
谷歌大脑提出:基于NAS的目标检测模型NAS-FPN,超越Mask R-CNN 朱晓霞发表于目标检测和深度学习订阅 235 广告关闭 11.11 智慧上云 云服务器企业新用户优先购,享双11同等价格 ...
- CVPR2019 | 超越Mask R-CNN!华科开源图像实例分割新方法MS R-CNN
安妮 乾明 发自 凹非寺 本文转载自量子位(QbitAI) 实习生又立功了! 这一次,亮出好成绩的实习生来自地平线,是一名华中科技大学的硕士生. 他作为第一作者完成的研究Mask Scoring R- ...
- deeplearning.ai 卷积神经网络 Week 3 目标检测 听课笔记
本周的主题是对象检测(object detection):不但需要检测出物体(image classification),还要能定位出在图片的具体位置(classification with loca ...
- deeplearning.ai 卷积神经网络 Week 3 目标检测
本周的主题是对象检测(object detection):不但需要检测出物体(image classification),还要能定位出在图片的具体位置(classification with loca ...
- Google AI推出新的大规模目标检测挑战赛
来源 | Towards Data Science 整理 | 磐石 就在几天前,Google AI在Kaggle上推出了一项名为Open Images Challenge的大规模目标检测竞赛.当今计算 ...
- CVPR目标检测与实例分割算法解析:FCOS(2019),Mask R-CNN(2019),PolarMask(2020)
CVPR目标检测与实例分割算法解析:FCOS(2019),Mask R-CNN(2019),PolarMask(2020)1. 目标检测:FCOS(CVPR 2019)目标检测算法FCOS(FCOS: ...
- AI R-CNN目标检测算法
Region-CNN,简称R-CNN,是首次将深度学习应用于目标检测的算法. bounding box IOU 非极大值抑制 selective search 参考链接: https://blog.c ...
- 深度学习与CV教程(12) | 目标检测 (两阶段,R-CNN系列)
作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/37 本文地址:http://www.showmeai.tech/article-det ...
随机推荐
- Codeforces Round #612 (Div. 2)C. Garland
第四次写题解,请多指教! http://codeforces.com/contest/1287/problem/C题目链接 题目大意是有一个数字串挂有1-n n个数字,现在上面缺失了一些数字,让你找出 ...
- MySQL之单表多表查询
#1.单表查询 #单表查询语法 select <字段1,字段2....> from <表名> where <表达式> group by field 分组 havin ...
- 曹工说Spring Boot源码(22)-- 你说我Spring Aop依赖AspectJ,我依赖它什么了
写在前面的话 相关背景及资源: 曹工说Spring Boot源码(1)-- Bean Definition到底是什么,附spring思维导图分享 曹工说Spring Boot源码(2)-- Bean ...
- 7-30 jmu-python-凯撒密码加密算法 (10 分)
编写一个凯撒密码加密程序,接收用户输入的文本和密钥k,对明文中的字母a-z和字母A-Z替换为其后第k个字母. 输入格式: 接收两行输入,第一行为待加密的明文,第二行为密钥k. 输出格式: 输出加密后的 ...
- Javascript Event事件中IE与标准DOM的区别
1.事件流的区别 <body> <div> <button>点击这里</button> </div> </body> IE采用冒 ...
- [转帖]RSYNC 的核心算法
RSYNC 的核心算法 https://coolshell.cn/articles/7425.html rsync是unix/linux下同步文件的一个高效算法,它能同步更新两处计算机的文件与目录,并 ...
- koa进阶史(一)
1,设置静态文件目录,将__dirname 写成_dirname,乍看没什么毛病,但是一运行之后发现,_dirname is not defined,下次注意哈 app.use(express.sta ...
- WSGI-mini-web框架服务器
前期准备: 安装python环境安装pycharm安装MySQL数据库安装pymsql创建一个学生表,存入数据我们只是实现一个非常简单的web服务,前端页面不会专门做页面文件,会在代码中以具体命令的形 ...
- http2 技术整理 nginx 搭建 http2 wireshark 抓包分析 server push 服务端推送
使用 nginx 搭建一个 http2 的站点,准备所需: 1,域名 .com .net 均可(国内域名需要 icp 备案) 2,云主机一个,可以自由的安装配置软件的服务器 3,https 证书 ht ...
- 面试总被问分布式ID怎么办? 滴滴(Tinyid)甩给他
整理了一些Java方面的架构.面试资料(微服务.集群.分布式.中间件等),有需要的小伙伴可以关注公众号[程序员内点事],无套路自行领取 一口气说出 9种 分布式ID生成方式,面试官有点懵了 面试总被问 ...