预处理实验数据

读取数据

下载数据 网盘链接:https://pan.baidu.com/s/1n_FtZjAswWR9rfuI6GtDhA 提取码:y4fb

#导入需要使用的库
import numpy as np
import pandas as pd #读取csv文件的库
import matplotlib.pyplot as plt
import torch
from torch.autograd import Variable
import torch.optim as optim # 让输出的图形直接在Notebook中显示
%matplotlib inline
#首先,让我们再来看看数据长什么样子
#读取数据到内存中,rides为一个dataframe对象
data_path = 'hour.csv'
rides = pd.read_csv(data_path)
rides.head()

对于类型变量的处理

#对于类型变量的特殊处理
# season=1,2,3,4, weathersi=1,2,3, mnth= 1,2,...,12, hr=0,1, ...,23, weekday=0,1,...,6
# 经过下面的处理后,将会多出若干特征,例如,对于season变量就会有 season_1, season_2, season_3, season_4
# 这四种不同的特征。
dummy_fields = ['season', 'weathersit', 'mnth', 'hr', 'weekday']
for each in dummy_fields:
#利用pandas对象,我们可以很方便地将一个类型变量属性进行one-hot编码,变成多个属性
dummies = pd.get_dummies(rides[each], prefix=each, drop_first=False)
rides = pd.concat([rides, dummies], axis=1) # 把原有的类型变量对应的特征去掉,将一些不相关的特征去掉
fields_to_drop = ['instant', 'dteday', 'season', 'weathersit',
'weekday', 'atemp', 'mnth', 'workingday', 'hr']
data = rides.drop(fields_to_drop, axis=1)
data.head()

对于数值类型变量进行标准化

# 调整所有的特征,标准化处理
quant_features = ['cnt', 'temp', 'hum', 'windspeed']
#quant_features = ['temp', 'hum', 'windspeed'] # 我们将每一个变量的均值和方差都存储到scaled_features变量中。
scaled_features = {}
for each in quant_features:
mean, std = data[each].mean(), data[each].std()
scaled_features[each] = [mean, std]
data.loc[:, each] = (data[each] - mean)/std

将数据集进行分割

# 将所有的数据集分为测试集和训练集,我们以后21天数据一共21*24个数据点作为测试集,其它是训练集
test_data = data[-21*24:]
train_data = data[:-21*24]
print('训练数据:',len(train_data),'测试数据:',len(test_data)) # 将我们的数据列分为特征列和目标列 #目标列
target_fields = ['cnt', 'casual', 'registered']
features, targets = train_data.drop(target_fields, axis=1), train_data[target_fields]
test_features, test_targets = test_data.drop(target_fields, axis=1), test_data[target_fields] # 将数据从pandas dataframe转换为numpy
X = features.values
Y = targets['cnt'].values
Y = Y.astype(float) Y = np.reshape(Y, [len(Y),1])
losses = [] features.head()

构建神经网络模型

手动编写用 Tensor 运算的人工神经网络

# 定义神经网络架构,features.shape[1]个输入层单元,10个隐含层,1个输出层
input_size = features.shape[1] #输入层单元个数
hidden_size = 10 #隐含层单元个数
output_size = 1 #输出层单元个数
batch_size = 128 #每隔batch的记录数
weights1 = Variable(torch.randn([input_size, hidden_size]), requires_grad = True) #第一到二层权重
biases1 = Variable(torch.randn([hidden_size]), requires_grad = True) #隐含层偏置
weights2 = Variable(torch.randn([hidden_size, output_size]), requires_grad = True) #隐含层到输出层权重
def neu(x):
#计算隐含层输出
#x为batch_size * input_size的矩阵,weights1为input_size*hidden_size矩阵,
#biases为hidden_size向量,输出为batch_size * hidden_size矩阵
hidden = x.mm(weights1) + biases1.expand(x.size()[0], hidden_size)
hidden = torch.sigmoid(hidden) #输入batch_size * hidden_size矩阵,mm上weights2, hidden_size*output_size矩阵,
#输出batch_size*output_size矩阵
output = hidden.mm(weights2)
return output
def cost(x, y):
# 计算损失函数
error = torch.mean((x - y)**2)
return error
def zero_grad():
# 清空每个参数的梯度信息
if weights1.grad is not None and biases1.grad is not None and weights2.grad is not None:
weights1.grad.data.zero_()
weights2.grad.data.zero_()
biases1.grad.data.zero_()
def optimizer_step(learning_rate):
# 梯度下降算法
weights1.data.add_(- learning_rate * weights1.grad.data)
weights2.data.add_(- learning_rate * weights2.grad.data)
biases1.data.add_(- learning_rate * biases1.grad.data)

调用PyTorch现成的函数,构建序列化的神经网络

# 定义神经网络架构,features.shape[1]个输入层单元,10个隐含层,1个输出层
input_size = features.shape[1]
hidden_size = 10
output_size = 1
batch_size = 128
neu = torch.nn.Sequential(
torch.nn.Linear(input_size, hidden_size),
torch.nn.Sigmoid(),
torch.nn.Linear(hidden_size, output_size),
)
cost = torch.nn.MSELoss()
optimizer = torch.optim.SGD(neu.parameters(), lr = 0.01)

数据的分批次处理

# 神经网络训练循环
losses = []
for i in range(1000):
# 每128个样本点被划分为一个撮,在循环的时候一批一批地读取
batch_loss = []
# start和end分别是提取一个batch数据的起始和终止下标
for start in range(0, len(X), batch_size):
end = start + batch_size if start + batch_size < len(X) else len(X)
xx = Variable(torch.FloatTensor(X[start:end]))
yy = Variable(torch.FloatTensor(Y[start:end]))
predict = neu(xx)
loss = cost(predict, yy)
optimizer.zero_grad()
loss.backward()
optimizer.step()
batch_loss.append(loss.data.numpy()) # 每隔100步输出一下损失值(loss)
if i % 100==0:
losses.append(np.mean(batch_loss))
print(i, np.mean(batch_loss))
# 打印输出损失值
fig = plt.figure(figsize=(10, 7))
plt.plot(np.arange(len(losses))*100,losses, 'o-')
plt.xlabel('epoch')
plt.ylabel('MSE')

测试网络

使用测试数据集测试网络

# 用训练好的神经网络在测试集上进行预测
targets = test_targets['cnt'] #读取测试集的cnt数值
targets = targets.values.reshape([len(targets),1]) #将数据转换成合适的tensor形式
targets = targets.astype(float) #保证数据为实数 # 将属性和预测变量包裹在Variable型变量中
x = Variable(torch.FloatTensor(test_features.values))
y = Variable(torch.FloatTensor(targets)) # 用神经网络进行预测
predict = neu(x)
predict = predict.data.numpy() # 将后21天的预测数据与真实数据画在一起并比较
# 横坐标轴是不同的日期,纵坐标轴是预测或者真实数据的值
fig, ax = plt.subplots(figsize = (10, 7)) mean, std = scaled_features['cnt']
ax.plot(predict * std + mean, label='Prediction', linestyle = '--')
ax.plot(targets * std + mean, label='Data', linestyle = '-')
ax.legend()
ax.set_xlabel('Date-time')
ax.set_ylabel('Counts')
# 对横坐标轴进行标注
dates = pd.to_datetime(rides.loc[test_data.index]['dteday'])
dates = dates.apply(lambda d: d.strftime('%b %d'))
ax.set_xticks(np.arange(len(dates))[12::24])
_ = ax.set_xticklabels(dates[12::24], rotation=45)

PyTorch基础——预测共享单车的使用量的更多相关文章

  1. 烧光百亿的共享单车行业,ofo和摩拜到底该不该合并?

    共享经济领域可谓一地鸡毛,除了众多不靠谱的跟风项目外--共享马扎."老公寄存屋",更多的是不绝于耳的倒闭消息.尤其是在共享单车行业,暂且不提那些体量小的项目,单单是倒闭的大型共享单 ...

  2. 【Social listening实操】用大数据文本挖掘,来洞察“共享单车”的行业现状及走势

    本文转自知乎 作者:苏格兰折耳喵 ----------------------------------------------------- 对于当下共享单车在互联网界的火热状况,笔者想从大数据文本挖 ...

  3. 关于小黄车(ofo共享单车)使用的问题

    小黄车即ofo共享单车,号称是全球创立最早.成长最快.规模最大的无桩共享单车创业公司,缔造了"共享单车"概念,致力于解决城市出行问题.它的出现给大家带来了方便,作为一个商业运行的公 ...

  4. RFID电动自行车与共享单车之物联网比较

    目前比较热门的RFID电动自行车管理和共享单车,都是属于物联网范畴.它们之间有什么不同呢? 1.RFID电动自行车管理系统原理 RFID电动自行车管理,利用了有源RFID技术,使用基站SR8读取安装在 ...

  5. 爬取ofo共享单车信息

    前段时间看到很多微信公众号在转发一篇爬取mobike单车的信息,也不知道什么原因,在网上搜索了下很少有人在爬取ofo共享单车的数据,所以决定看看可以爬取ofo共享单车的那些数据. 抓取数据开始的时候, ...

  6. 大数据freestyle: 共享单车轨迹数据助力城市合理规划自行车道

    编者按:近年来,异军突起的共享单车极大地解决了人们共同面临的“最后一公里”难题,然而,共享单车发展迅猛,自行车道建设却始终没有能够跟上脚步.幸运的是摩拜单车大量的轨迹数据为我们提供了一种新的思路:利用 ...

  7. ofo身陷被收购、破产传闻,中国的共享单车还能活下去吗?

    大潮退去,终将现出谁在"裸泳".尤其是那些看似火爆却迅速陨落的新事物,总是避免不了让人发出"伤仲永"的感慨.这其中,共享经济就是很典型的案例.共享睡眠舱.共享马 ...

  8. oBike退出新加坡、ofo取消免押金服务,全球共享单车都怎么了?

    浪潮退去后,才知道谁在裸泳.这句已经被说烂的"至理名言",往往被用在一波接一波的互联网热潮中.团购.O2O.共享单车.共享打车.无人货柜--几乎每一波热潮在退去后会暴露出存在的问题 ...

  9. [人工智能]Pytorch基础

    PyTorch基础 摘抄自<深度学习之Pytorch>. Tensor(张量) PyTorch里面处理的最基本的操作对象就是Tensor,表示的是一个多维矩阵,比如零维矩阵就是一个点,一维 ...

随机推荐

  1. mysql第四篇:数据操作之多表查询

    mysql第四篇:数据操作之多表查询 一.多表联合查询 #创建部门 CREATE TABLE IF NOT EXISTS dept ( did int not null auto_increment ...

  2. [XNUCA2019Qualifier]EasyPHP

    0x00 知识点 预期解中知识点: htaccess生效 如果尝试上传htaccess文件会发现出现响应500的问题,因为文件尾有Just one chance 这里采用# \的方式将换行符转义成普通 ...

  3. Linux-课后练习(第二章命令)20200217-1

  4. Windbg 实践之符号篇

    How to display the size value 1)一开始不会加载,chksym 了一下就加载了. 2) 新版本已经可以显示size的大小了 3)?? 显示变量的类型 4)x std::v ...

  5. c++ 排序 冒泡 插入 选择 快速

    //冒泡 #include <iostream> using namespace std; void bubbleSort(int* list,int index) { ;i--) //i ...

  6. php对象:get_object_vars(), get_parent_class(),is_subclass_of(),interface_exists()

    get_object_vars():获得对象的属性,以关联数组形式返回 get_parent_class():获得对象的父类 is_subclass_of():判断对象是否某类(参数2)的子类实例出的 ...

  7. JNI传递修改自定义Java Class数组数据

    声明:迁移自本人CSDN博客https://blog.csdn.net/u013365635 结合前面讲的2篇关于JNI的文章,这里直接把代码贴上,主要是要知道如果传递自定义Class Array的时 ...

  8. linux tar/ tar.gz文件解压

    1.tar 压缩 tar -cvf jpg.tar *.jpg //将目录里所有jpg文件打包成tar.jpg tar -czf jpg.tar.gz *.jpg   //将目录里所有jpg文件打包成 ...

  9. ZJNU 2340/2341/2343 - 罗小黑的“礼物”Ⅰ/Ⅱ/Ⅲ

    把一位数.两位数.三位数……这些所在的范围分开判断 可得1~9这些数范围在[1,9]内 10~99内共有90个数,每个数占两位,所以共有180位在,范围在[10,189]内 同理,100~999内共有 ...

  10. android中shape的使用(android:angle小解)

    本文参考http://kofi1122.blog.51cto.com/2815761/521605和http://blog.csdn.net/qizi329/article/details/63098 ...