bzoj 2820 YY的GCD(莫比乌斯反演)
Description
Input
Output
Sample Input
10 10
100 100
Sample Output
2791
HINT
T = 10000
N, M <= 10000000
【思路】

唉??click here
【代码】
#include<cstdio>
#include<algorithm>
using namespace std; typedef long long ll;
const int N = 1e7+; ll mu[N],sum[N],su[N],sz,np[N]; void get_mu()
{
int i,j;
mu[]=;
for(i=;i<N;i++) {
if(!np[i]) {
su[++sz]=i;
mu[i]=-;
}
for(j=;j<=sz&&i*su[j]<N;j++) {
np[i*su[j]]=;
if(i%su[j]==) mu[i*su[j]]=;
else mu[i*su[j]]=-mu[i];
}
}
for(i=;i<=sz;i++)
for(j=su[i];j<N;j+=su[i])
sum[j]+=mu[j/su[i]];
for(i=;i<N;i++)
sum[i]+=sum[i-];
}
ll C(int n,int m)
{
int i,last; ll res=;
if(n>m) swap(n,m);
for(i=;i<=n;i=last+) {
last=min(n/(n/i),m/(m/i));
res+=(n/i)*(m/i)*(sum[last]-sum[i-]);
}
return res;
}
int main()
{
get_mu();
int T,n,m;
scanf("%d",&T);
while(T--) {
scanf("%d%d",&n,&m);
printf("%lld\n",C(n,m));
}
return ;
}
bzoj 2820 YY的GCD(莫比乌斯反演)的更多相关文章
- [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块)
[BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块) 题面 给定N, M,求\(1\leq x\leq N, 1\leq y\leq M\)且gcd(x, y)为质数的(x, y)有多少对. ...
- BZOJ 2820: YY的GCD [莫比乌斯反演]【学习笔记】
2820: YY的GCD Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 1624 Solved: 853[Submit][Status][Discu ...
- Bzoj 2820: YY的GCD(莫比乌斯反演+除法分块)
2820: YY的GCD Time Limit: 10 Sec Memory Limit: 512 MB Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x& ...
- bzoj 2820 YY的GCD 莫比乌斯反演
题目大意: 给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对 这里就抄一下别人的推断过程了 后面这个g(x) 算的方法就是在线性 ...
- bzoj 2820 YY的GCD - 莫比乌斯反演 - 线性筛
Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对kAc这种 傻×必 ...
- BZOJ 2820: YY的GCD 莫比乌斯反演_数学推导_线性筛
Code: #include <cstdio> #include <algorithm> #include <cstring> #include <vecto ...
- BZOJ 2820 YY的GCD ——莫比乌斯反演
我们可以枚举每一个质数,那么答案就是 $\sum_{p}\sum_{d<=n}\mu(d)*\lfloor n / pd \rfloor *\lfloor m / pd \rfloor$ 直接做 ...
- 【莫比乌斯反演】关于Mobius反演与gcd的一些关系与问题简化(bzoj 2301 Problem b&&bzoj 2820 YY的GCD&&BZOJ 3529 数表)
首先我们来看一道题 BZOJ 2301 Problem b Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd( ...
- 【刷题】BZOJ 2820 YY的GCD
Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对kAc这种傻×必然 ...
- SPOJ PGCD 4491. Primes in GCD Table && BZOJ 2820 YY的GCD (莫比乌斯反演)
4491. Primes in GCD Table Problem code: PGCD Johnny has created a table which encodes the results of ...
随机推荐
- MVC4多语言IHttpModule实现
最近项目需要多语言环境了. 由于项目页面较多,逐个Action去读取资源文件不大现实.就想到了使用 IHttpModule配合MVC的路由规则来实现. 首先创建以个mvc4的应用程序,添加资源文件夹( ...
- 深入js的面向对象学习篇——温故知新(一)
在学习设计模式前必须要知道和掌握的***. 为类添加新方法: Function.prototype.method = function(name,fn) { this.prototype[name] ...
- [转载]test后跟je
今天俺也用OD(OllyDbg)反汇编了个小软件,其中里面有下面两条指令: 没太明白什么意思,google一下,在看雪论坛上发现了一个大虾的解释很详细,记录一下: 1.test a,b 是a与b相与的 ...
- uva 10369
数组开小了 还RE了一遍....... 最小生成树 按费用从小到大排... #include <iostream> #include <algorithm> #inc ...
- MySql Error: Can't update table in stored function/trigger
MySql Error: Can't update table in stored function/trigger because it is already used by statement w ...
- POJ 3191 The Moronic Cowmpouter(进制转换)
题目链接 题意 : 将一个10进制整数转化为-2进制的数. 思路 :如果你将-2进制下的123转化为十进制是1*(-2)^2+2*(-2)^1+3*(-2)^0.所以十进制转化为-2进制就是一个逆过程 ...
- jmeter 一个可能引起性能严重下降的断言设置
在添加断言时一定要注意: 1. 红框部分选择 "响应文本", 2. 要断言的内容越短越好
- Subversion安装和使用
Subversion(SVN)是优秀的版本控制工具,其具体的的优点和详细介绍,这里就不再多说.SVN分为客户端和服务器端,一般服务器端安装在服务器上,我们开发者用的都是客户端.TortoiseSVN是 ...
- DSP6455 DSP/BIOS中断配置问题(是否需要ECM-事件组合以及实例)
2013-06-20 21:08:48 中断的配置有两种常用的方式: 一是通过CSL提供的API进行配置,这种方法相对DSP/BIOS偏底层,也比较麻烦:这种方法要求对中断系统的工作方式很清楚. 二是 ...
- 锋利的JQuery-Jquery中的事件和动画
有时候觉得这些内容都好简单,真想看看就算了. 事件绑定 bing(type [,data],fn) 第一个参数:事件类型包括:blur,focus,load,resize,scroll,unload, ...