If $A$ is a contraction, show that $$\bex A^*(I-AA^*)^{1/2}=(I-A^*A)^{1/2}A^*. \eex$$ Use this to show that if $A$ is a contraction on $\scrH$, then the operators $$\bex U=\sex{\ba{cc} A&(I-AA^*)^{1/2}\\ (I-A^*A)^{1/2}&-A^* \ea}, \eex$$ $$\bex V=\sex{\ba{cc} A&-(I-AA^*)^{1/2}\\ (I-A^*A)^{1/2}&A^* \ea} \eex$$ are unitary operators on $\scrH\oplus \scrH$.

Solution.

(1). By the singular value decomposition, there exist unitaries $W,Q$ such that $$\bex A=WSQ^*,\quad S=\diag(s_1,\cdots,s_n),\quad s_i\geq 0, \eex$$ and hence $$\bex A^*=QSW^*. \eex$$ Consequently, $$\beex \ba{rlrl} AA^*&=WS^2W^*,&A^*A&=QS^2Q^*,\\ I-AA^*&=W(I-S^2)W^*,&I-A^*A&=Q(I-S^2)Q^*,\\ (I-AA^*)^{1/2}&=W\vLm W^*,& (I-A^*A^{1/2}&=Q\vLm Q^*, \ea \eeex$$ where $$\bex \vLm=\diag\sex{\sqrt{1-s_1^2},\cdots,\sqrt{1-s_n^2}}. \eex$$ Thus, $$\beex \bea A^*(I-AA^*)^{1/2}&=QS\vLm W^*\\ &=Q\diag\sex{s_1\sqrt{1-s_1^2},\cdots, s_n\sqrt{1-s_n^2}}W^*\\ &=Q\vLm S W^*\\ &=(I-A^*A)^{1/2} A^*. \eea \eeex$$

(2). As noticed in (1), $A$ is a contraction is equivalent to say that $A^*$ is a contraction. Direction computations with $$\bex A^*(I-AA^*)^{1/2}=(I-A^*A)^{1/2}A^*,\quad A(I-A^*A)^{1/2}=(I-AA^*)^{1/2}A \eex$$ yields the fact that $U,V$ are unitary.

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.6的更多相关文章

  1. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1

    Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...

  2. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7

    For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...

  3. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10

    Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...

  4. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5

    Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...

  5. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1

    Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...

  6. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6

    Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...

  7. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4

    (1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...

  8. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8

    For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...

  9. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7

    The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...

  10. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6

    If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa converg ...

随机推荐

  1. 自定义UICollectionViewLayout并添加UIDynamic - scorpiozj(转)

    转载自:http://www.tuicool.com/articles/jM77Vf     自定义UICollectionViewLayout并添加UIDynamic UICollectionVie ...

  2. Java字符串之性能优化

    基础类型转化成String 在程序中你可能时常会需要将别的类型转化成String,有时候可能是一些基础类型的值.在拼接字符串的时候,如果你有两个或者多个基础类型的值需要放到前面,你需要显式的将第一个值 ...

  3. 【android-cocos2d-X2.2 环境配置】在Mac下搭建Cocos2d-X-android开发环境!

    仅用于cocos2d-X2.2--cocos2d-X3.4 原文地址:http://blog.csdn.net/dingkun520wy/article/details/17097593 (1)下载 ...

  4. 格式化说明符定义、转义字符、枚举、结构体、typedef

    1.格式化说明符定义: %i,%d:输出十进制整型数 %6d:输出十进制整型数,至少6个字符宽 %li,%ld:输出长整数 %u:输出无符号整数 %lu:输出无符号长整数(相当于:unsigned l ...

  5. 微软Hololens设备 浅分析

    微软Hololens的定位是一款MR 设备(Mixed reality).MR与AR的不同我认为是MR能够将真实环境的场景信息与虚拟对象进行完美的融合,它是基于SLAM(SimultaneousLoc ...

  6. C++内存泄露调试

    我在看DirectX Sample的时候,看到以下代码: // Enable run-time memory check for debug builds. #if defined(DEBUG) | ...

  7. centos7 更新yum安装源

    系统自带的yum安装源有些软件找不到  这里我们使用阿里云的源 1.加源 wget -O /etc/yum.repos.d/epel.repo http://mirrors.aliyun.com/re ...

  8. org.hibernate.LazyInitializationException

    1.org.hibernate.LazyInitializationException: failed to lazily initialize a collection of role: com.c ...

  9. hdu 3646

    DP  状态转移方程还是比较容易想到  关键问题是当前要攻击的怪兽的血量 dp[i][j] = max(dp[i-1][j]+第i只鸟不使用double可杀死的怪兽数, dp[i-1][j-1]+第i ...

  10. uva 10404

    dp   1表示先手赢 #include <iostream> #include <cstdio> #include <cstring> #include < ...