If $A$ is a contraction, show that $$\bex A^*(I-AA^*)^{1/2}=(I-A^*A)^{1/2}A^*. \eex$$ Use this to show that if $A$ is a contraction on $\scrH$, then the operators $$\bex U=\sex{\ba{cc} A&(I-AA^*)^{1/2}\\ (I-A^*A)^{1/2}&-A^* \ea}, \eex$$ $$\bex V=\sex{\ba{cc} A&-(I-AA^*)^{1/2}\\ (I-A^*A)^{1/2}&A^* \ea} \eex$$ are unitary operators on $\scrH\oplus \scrH$.

Solution.

(1). By the singular value decomposition, there exist unitaries $W,Q$ such that $$\bex A=WSQ^*,\quad S=\diag(s_1,\cdots,s_n),\quad s_i\geq 0, \eex$$ and hence $$\bex A^*=QSW^*. \eex$$ Consequently, $$\beex \ba{rlrl} AA^*&=WS^2W^*,&A^*A&=QS^2Q^*,\\ I-AA^*&=W(I-S^2)W^*,&I-A^*A&=Q(I-S^2)Q^*,\\ (I-AA^*)^{1/2}&=W\vLm W^*,& (I-A^*A^{1/2}&=Q\vLm Q^*, \ea \eeex$$ where $$\bex \vLm=\diag\sex{\sqrt{1-s_1^2},\cdots,\sqrt{1-s_n^2}}. \eex$$ Thus, $$\beex \bea A^*(I-AA^*)^{1/2}&=QS\vLm W^*\\ &=Q\diag\sex{s_1\sqrt{1-s_1^2},\cdots, s_n\sqrt{1-s_n^2}}W^*\\ &=Q\vLm S W^*\\ &=(I-A^*A)^{1/2} A^*. \eea \eeex$$

(2). As noticed in (1), $A$ is a contraction is equivalent to say that $A^*$ is a contraction. Direction computations with $$\bex A^*(I-AA^*)^{1/2}=(I-A^*A)^{1/2}A^*,\quad A(I-A^*A)^{1/2}=(I-AA^*)^{1/2}A \eex$$ yields the fact that $U,V$ are unitary.

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.6的更多相关文章

  1. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1

    Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...

  2. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7

    For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...

  3. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10

    Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...

  4. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5

    Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...

  5. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1

    Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...

  6. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6

    Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...

  7. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4

    (1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...

  8. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8

    For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...

  9. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7

    The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...

  10. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6

    If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa converg ...

随机推荐

  1. EXTJS4.2 控件之Grid 根据数据源某列数据不同绑定不同的控件setEditor

    Grid 根据数据源某列数据不同绑定不同的控件,例如:文本框和下拉框 主要代码写在grid的  plugins: [rowEditing],下面这是定义的rowEditing对象,这里面的要定义成 E ...

  2. iOS 基础 第四天(0809)

    0809 - 内存管理,只对oc对象生效. alloc.retain.release.retainCount 局部变量是放在栈里面的,oc对象是放在堆里面的.栈里面的内容系统自动回收,而堆里面的内容还 ...

  3. Java发送邮件(带附件)

    实现java发送邮件的过程大体有以下几步: 准备一个properties文件,该文件中存放SMTP服务器地址等参数. 利用properties创建一个Session对象 利用Session创建Mess ...

  4. Csharp volatile 关键字

    volatile 关键字指示一个字段可以由多个同时执行的线程修改.声明为 volatile 的字段不受编译器优化(假定由单个线程访问)的限制.这样可以确保该字段在任何时间呈现的都是最新的值. vola ...

  5. 1509 -- Glass Beads POJ

    题意:求一个字符串的最小表示的开始下标 就当模板题写了 把字符串重复一遍,再建后缀自动机,贪心的选最小字典序在上面走len步 因为走出来的一定是子串,长度又是len,所以一定是原来的字符串旋转得到的, ...

  6. localStorage 便签功能实现

    之前利用localStorage写过手机便签应用,因为蛋疼的换了台三星的屌丝级手机,木 有了测试的工具,没能继续优化维护下去.而在网页上实现便签功能目前来说似乎没有太大 的意义,因为不论是 Firef ...

  7. 优化SQL Server数据库查询方法

    SQL Server数据库查询速度慢的原因有很多,常见的有以下几种: 1.没有索引或者没有用到索引(这是查询慢最常见的问题,是程序设计的缺陷) 2.I/O吞吐量小,形成了瓶颈效应. 3.没有创建计算列 ...

  8. P​H​P​ ​5​.​3​连​接​s​q​l​ ​s​e​r​v​e​r​ ​2​0​0​8​ ​R​2

    我的机器为: xp sp3 sql server 2008 developer apache 2.2.2 php 5.3  从5.3开始,php就不再提供mssql.dll了,所以要php连接sql  ...

  9. POJ 3393 Lucky and Good Months by Gregorian Calendar

    http://poj.org/problem?id=3393 题意 : 对于这篇长长的英语阅读,表示无语无语再无语,花了好长时间,终于读完了.题目中规定每周的周六日为假日,其他为工作日,若是一个月的第 ...

  10. iOS如何把导航默认的返回按钮设置成“返回”

    版权声明:本CSDN博客所有文章不更新,请关注标哥博客:http://www.henishuo.com/ - (void)addBackItemWithAction:(SEL)action { if  ...