数字三角形(数塔问题)


其实动态规划本身并不是一个特定的算法,是一种用途广泛的问题求解方法,一种思想,一种手段。

1.1问题描述与状态定义


有一个有非负整数组成的三角形,第一行一个数字,下面各行除了最后一行外,每行的每个数字下面左右各一个数字。
如图示:

从第一行数字开始,每次只能走左下或右下一格,直到走到最后一行,把沿途的走过的所有数字加起来。
如何能使这个和最大?

【问题复杂度分析】如果熟悉回溯法,就会立即发现这是一个动态的决策问题:每次两个选择----左下或右下。
但是如果选择用回溯法解决此问题,惯常的问题就是效率太低:一格n层的数字三角形的完整路线有2^n条,所以当n很大时完全不能靠此方法。

因此为了提高效率,需要把此问题抽象:把所有的位置(i,j)抽象为一个个不同的状态,然后定义状态(i,j)的指标函数d(i,j)为从格子(i,j)出发时能得到的最大的和(包括此格子本身)。在这个定义下,原问题的解是d(1,1)。

如下图:



 
【状态转移分析】从格子(i,j)出发有两种决策。若往左走,则走到(i+1,j)后续要求“从(i+1,j)出发后能得到的最大和“这一问题,即是d(i+1,j)。类似的,往右做之后要求解d(i,j+1)。由于这两个选择自由可选,所以,应该选择较大的。即得到了所谓的状态转移方程:

d(i,j) = a(i,j) + max { d(i+1, j), d(i, j+1)  }

最优子结构:如果往左走,最好的情况是(i,j)格子里面的值a(i,j) 与”从(i+1,j)出发后能得到的最大和"之和, 注意"最大"两个字,如果从(i,j)出发到底部这部分都不是最大的话,加上a(i,j)也必然不是最大的。这就是最优子结构。或描述全局最优解包含局部最优解。


【总结】动态规划的核心是状态和状态转移方程。

1.2 解决方法:记忆化搜索与递推


方法一:递归计算

代码如下:(注意边界)
int d(int i, int j)
{
return a[i][j] +( i == n ? 0 : d(i+1, j) >? d(i, j+1) ) ;
}

如此计算正确只是效率依然不高,问题在于重复计算。就是一些格子被两个父节点所共有,所以,在递归的时候,便会被重复计算。



方法二: 递推计算


代码如下:
(注意此时重复边界的处理)
int  i, j;
for (j=1; j<=n; j++)
d[n][j] = a[n][j] ;
for (i=n-1; i>=1; i--)
for (j=1; j<=i; j++)
{
d[i][j] = a [i][j] + d[i+1][j] >? d[i][j+1] ;
}

时间复杂度显然是O(n^2),
可以如此计算的原因在于:
i是逆序枚举的,因此在计算d[i] [j] 之前,他所需要的d[i+1][j] 和 d[i][j+1] 已经计算出来了。

提示:在多数情况下,可以采用递推法计算状态转移方程。递推的关键在于边界和计算顺序。多数情况下,递推法的时间复杂度是:状态转移方程X每个状态的决策数X决策时间。


方法三:记忆化搜索

程序分为两部分。首先用数组函数memset();将数组整体置为-1,然后写递归函数:
int d(int i, int j)
{
if(d[i][j >= 0) return d[i][j] ;
return d[i][j] = a[i][j] +( i == n ? 0 : d(i+1, j) >? d(i, j+1) ) ;
}

依然是递归函数,同时把计算结果存在数组d中。题目说各个数字均为非负数,因此如已经计算过某个d[i][j],那么期应该是非负数。
这样只需要把所有的数组元素初始化为负数,如-1,就可以知道是否计算过d[i][j].

注意:不要忘记把结果存在数组d[i][j]中。根绝c语言的”赋值语句本身有返回值“的规定,可以把保存d[i][j]的工作整合在函数的返回语句中。

上述的方法三称为记忆化,虽然不像地推算法那样显示的指明了计算的顺序,但是任然可以保证每个节点只访问了一次。

由于i和j都在1~n之间,所以所有的不同的节点之间一共有O(n^2)个。即是时间复杂度。

提示:可以用记忆化搜索的方法计算状态转移方程。采用记忆化搜索时,不必事先确定个状态的计算顺序,但需要记住每个状态是否计算过。


1.3程序实战练手

HDOJ--2084


未完待续...................
下一节:DAG上的(DP)

算法入门系列一--DP初步的更多相关文章

  1. 数据结构与算法入门系列教程-C#

    数据结构与算法入门系列教程 (一)为啥要学习数据结构与算法 曾经我也以为自己很牛逼,工作中同事也觉得我还可以,领导也看得起我,啥啥啥都好,就这样过了几年,忽然发现自己学新东西没劲.时代都变了,而我还只 ...

  2. 算法入门系列2:k近邻算法

    用官方的话来说,所谓K近邻算法(k-Nearest Neighbor,KNN),即是给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的K个实例(也就是上面所说的K个邻居), 这K个 ...

  3. 算法入门系列1:k-means

    k-means是一种无监督学习算法,用于聚类. 下图(来自http://www.cnblogs.com/jerrylead/archive/2011/04/06/2006910.html)展示了k-m ...

  4. 数据挖掘入门系列教程(二)之分类问题OneR算法

    数据挖掘入门系列教程(二)之分类问题OneR算法 数据挖掘入门系列博客:https://www.cnblogs.com/xiaohuiduan/category/1661541.html 项目地址:G ...

  5. 数据挖掘入门系列教程(三)之scikit-learn框架基本使用(以K近邻算法为例)

    数据挖掘入门系列教程(三)之scikit-learn框架基本使用(以K近邻算法为例) 简介 scikit-learn 估计器 加载数据集 进行fit训练 设置参数 预处理 流水线 结尾 数据挖掘入门系 ...

  6. 数据挖掘入门系列教程(四点五)之Apriori算法

    目录 数据挖掘入门系列教程(四点五)之Apriori算法 频繁(项集)数据的评判标准 Apriori 算法流程 结尾 数据挖掘入门系列教程(四点五)之Apriori算法 Apriori(先验)算法关联 ...

  7. 数据挖掘入门系列教程(五)之Apriori算法Python实现

    数据挖掘入门系列教程(五)之Apriori算法Python实现 加载数据集 获得训练集 频繁项的生成 生成规则 获得support 获得confidence 获得Lift 进行验证 总结 参考 数据挖 ...

  8. 前端学习 node 快速入门 系列 —— 初步认识 node

    其他章节请看: 前端学习 node 快速入门 系列 初步认识 node node 是什么 node(或者称node.js)是 javaScript(以下简称js) 运行时的一个环境.不是一门语言. 以 ...

  9. vue 快速入门 系列 —— 初步认识 vue

    其他章节请看: vue 快速入门 系列 初步认识 vue vue 是什么 Vue (读音 /vjuː/,类似于 view) 是一套用于构建用户界面的渐进式框架. 所谓渐进式,就是你可以一步一步.有阶段 ...

随机推荐

  1. C# 类与接口的几个问题的总结(待续)

    1. 有关类的多态性 C#中,类的多态性是通过在子类中重载基类的虚方法(virtual标识)或函数成员来实现. 在C#中,继承.虚方法和重写方法组合在一起才能实现多态性. 2. 显式接口成员的使用 显 ...

  2. Android功能模块化之生成验证码Bitmap

    Android生成验证码Bitmap,主要使用Canvas绘制,实现的步骤如下: 1.生成验证码.主要采用java的随机函数生成序号,然后对应获取预设的Char数组的值,生成长度固定的验证码: 2.C ...

  3. HDU 3584-Cube(三维BIT)

    题意: 给你三维空间两种操作,给出两顶点坐标,把它们确定范围(长方体)内的数全部取反.查询给定点的值.初始全部为零 分析: 有了前面的知识,用BIT实现区间更新单点查询,再用多维实现即可 #inclu ...

  4. CSS:7个你可能不认识的单位

    原文:7 CSS Units You Might Not Know About 众所周知,当使用CSS技术的时候,很容被一些奇异问题给困住.而当我们面对新的问题时,这会让我们处于非常不利的位置. 但是 ...

  5. 发布 asp.net网站 到本地IIS

    http://blog.csdn.net/jiben2qingshan/article/details/9249139 概述 网站是由一个个页面组成的,是万维网具体的变现形式,关于万维网,网页的方面的 ...

  6. LeetCode 234 Palindrome Linked List

    Given a singly linked list, determine if it is a palindrome. 思路: 回文结构从后向前遍历与从前向后遍历的结果是相同的,可以利用一个栈的结构 ...

  7. hive常见问题解决干货大全

    本人,苦心多时,历经磨难和心血,与大家共同攻克问题难关! 问题一: FAILED: Execution Error, return code 1 from org.apache.hadoop.hive ...

  8. ubuntu 备份安装程序列表

    一般情况下,我们重装ubuntu的系统会做如下几个事情 1)修改默认的程序更新源 2)开始根据需求安装软件. 3)配置文件(如vim/tmux等) 对于步骤,只需要cp /etc//etc/apt/s ...

  9. MongoDB 字段增长

    MongoDB中存储的文档必须有一个"_id"键.这个键的值可以是任何类型的,默认是个ObjectId对象. ObjectId 是一个12字节 BSON 类型数据,有以下格式: 前 ...

  10. poj 1679 http://poj.org/problem?id=1679

    http://poj.org/problem?id=1679 The Unique MST Time Limit: 1000MS   Memory Limit: 10000K Total Submis ...