题目链接:

第K大区间2

基准时间限制:1.5 秒 空间限制:131072 KB 分值: 160

定义一个长度为奇数的区间的值为其所包含的的元素的中位数。中位数_百度百科

现给出n个数,求将所有长度为奇数的区间的值排序后,第K大的值为多少。

样例解释:

[l,r]表示区间的值
[1]:3
[2]:1
[3]:2
[4]:4
[1,3]:2
[2,4]:2

第三大是2

Input
第一行两个数n和k(1<=n<=100000,k<=奇数区间的数量)
第二行n个数,0<=每个数<2^31
Output
一个数表示答案。
Input示例
4 3
3 1 2 4
Output示例
2

题意:

思路:

二分答案t,统计中位数大于等于t的区间有多少个。
设a[i]为前i个数中有a[i]个数>=t,若奇数区间[l,r]的中位数>=t,则(a[r]-a[l-1])*2>r-l+1,即(a[r]*2-r)>(a[l-1]*2-l+1)。
设b[i]=a[i]*2-i,统计每个b[i]有多少个b[j]<b[i](j<i 且 j和i奇偶性不同)
总复杂度O(nlognlogn)

AC代码:
//#include <bits/stdc++.h>
#include <vector>
#include <iostream>
#include <queue>
#include <cmath>
#include <map>
#include <cstring>
#include <algorithm>
#include <cstdio> using namespace std;
#define Riep(n) for(int i=1;i<=n;i++)
#define Riop(n) for(int i=0;i<n;i++)
#define Rjep(n) for(int j=1;j<=n;j++)
#define Rjop(n) for(int j=0;j<n;j++)
#define mst(ss,b) memset(ss,b,sizeof(ss));
typedef long long LL;
template<class T> void read(T&num) {
char CH; bool F=false;
for(CH=getchar();CH<''||CH>'';F= CH=='-',CH=getchar());
for(num=;CH>=''&&CH<='';num=num*+CH-'',CH=getchar());
F && (num=-num);
}
int stk[], tp;
template<class T> inline void print(T p) {
if(!p) { puts(""); return; }
while(p) stk[++ tp] = p%, p/=;
while(tp) putchar(stk[tp--] + '');
putchar('\n');
} const LL mod=1e9+;
const double PI=acos(-1.0);
const LL inf=1e10;
const int N=1e5+; int n,k;
int a[N],b[N],sum[][N]; int lowbit(int x)
{
return x&(-x);
}
void update(int x,int flag)
{
while(x<=n)
{
sum[flag][x]++;
x+=lowbit(x);
}
}
int query(int x,int flag)
{
int s=;
while(x>)
{
s+=sum[flag][x];
x-=lowbit(x);
}
return s;
} struct node
{
int temp,pos,id;
}po[N];
int cmp1(node x,node y)
{
if(x.temp==y.temp)return x.pos<y.pos;
return x.temp<y.temp;
}
int cmp2(node x,node y)
{
return x.pos<y.pos;
}
int check(LL x)
{
mst(sum,);
Riep(n)
{
b[i]=b[i-]+(a[i]>=x?:);
po[i].temp=*b[i]-i;
po[i].pos=i;
}
sort(po+,po+n+,cmp1);
Riep(n)po[i].id=i;
sort(po+,po+n+,cmp2);
LL ans=;
Riep(n)
{
if(po[i].temp>&&i%==)ans++;//包括0的;
ans=ans+query(po[i].id,i&^);
update(po[i].id,i&);
}
if(ans>=k)return ;
return ;
} int main()
{
read(n);read(k);
Riep(n)read(a[i]);
LL l=,r=inf;
while(l<=r)
{
LL mid=(l+r)>>;
if(check(mid))l=mid+;
else r=mid-;
}
print(l-);
return ;
}

51nod 第K大区间2(二分+树状数组)的更多相关文章

  1. ACM学习历程—51NOD 1685 第K大区间2(二分 && 树状数组 && 中位数)

    http://www.51nod.com/contest/problem.html#!problemId=1685 这是这次BSG白山极客挑战赛的E题. 这题可以二分答案t. 关键在于,对于一个t,如 ...

  2. 【bzoj3110】[Zjoi2013]K大数查询 整体二分+树状数组区间修改

    题目描述 有N个位置,M个操作.操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c.如果是2 a b c形式,表示询问从第a个位置到第b个位置,第C大的数 ...

  3. BZOJ.3110.[ZJOI2013]K大数查询(整体二分 树状数组/线段树)

    题目链接 BZOJ 洛谷 整体二分求的是第K小(利用树状数组).求第K大可以转为求第\(n-K+1\)小,但是这样好像得求一个\(n\). 注意到所有数的绝对值\(\leq N\),将所有数的大小关系 ...

  4. hdu-5700 区间交(二分+树状数组)

    题目链接: 区间交 Problem Description   小A有一个含有n个非负整数的数列与mm个区间.每个区间可以表示为l​i​​,r​i​​. 它想选择其中k个区间, 使得这些区间的交的那些 ...

  5. BZOJ 3110([Zjoi2013]K大数查询-区间第k大[段修改,在线]-树状数组套函数式线段树)

    3110: [Zjoi2013]K大数查询 Time Limit: 20 Sec   Memory Limit: 512 MB Submit: 418   Solved: 235 [ Submit][ ...

  6. 【BZOJ3110】【整体二分+树状数组区间修改/线段树】K大数查询

    Description 有N个位置,M个操作.操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c 如果是2 a b c形式,表示询问从第a个位置到第b个位 ...

  7. BZOJ_3110_[Zjoi2013]K大数查询_整体二分+树状数组

    BZOJ_3110_[Zjoi2013]K大数查询_整体二分+树状数组 Description 有N个位置,M个操作.操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位 ...

  8. [bzoj1901][zoj2112][Dynamic Rankings] (整体二分+树状数组 or 动态开点线段树 or 主席树)

    Dynamic Rankings Time Limit: 10 Seconds      Memory Limit: 32768 KB The Company Dynamic Rankings has ...

  9. CodeForces992E 二分 + 树状数组(线段树)

    http://codeforces.com/problemset/problem/992/E 题意:给定一个序列 ai​ ,记其前缀和序列为 si​ ,有 q 个询问,每次单点修改,询问是否存在一个  ...

随机推荐

  1. Tair分布式key/value存储

    [http://www.lvtao.net/database/tair.html](特别详细)   tair 是淘宝自己开发的一个分布式 key/value 存储引擎. tair 分为持久化和非持久化 ...

  2. SQL Server 2008 无法保存表的更改

    MS SQL Server 2008 在建完表后,如果要重新设计表,如修改字段长度,就会提示:“当用户在在SQL Server 2008企业管理器中更改表结构时,必须要先删除原来的表,然后重新创建新表 ...

  3. Oracle闪回

    在PLSQL开发时,有时候会遇到对表的误删除,其实遇到这种情况不需要紧张,如果问题较大,请DBA帮忙,如果只是小问题,只需自己处理,利用flashback闪回操作即可,可将表进行恢复 在删除表时,系统 ...

  4. gif动态图片去白边,杂边

    (从已经死了一次又一次终于挂掉的百度空间人工抢救出来的,发表日期2014-05-30)

  5. maven中如何打包源代码

    http://yanghaoyuan.iteye.com/blog/2032406 使用Maven对项目部署太方便了,特别是依赖关系,最近学习使用Maven,为了备忘和技术的分享特意注册个账号记录到博 ...

  6. Sublime Text3 激活教程

    Sublime Text3激活 在使用Sublime时会定期弹出购买提示框,避免出现购买提示,影响工作效率,我们可以使用网上的激活码,虽然有些不厚道,但是工作以后,一定选择购买正版支持一下. 打开Su ...

  7. 理解Web标准(网站标准)

    我觉得一名Web前端应该好好理解Web标准到底是什么,为什么要在我们的实际实践中遵循Web标准. 什么是Web标准.百度百科的解释是: WEB标准不是某一个标准,而是一系列标准的集合.网页主要由三部分 ...

  8. IOS实用功能之截图(来自相册和拍照)

    // //  ViewController.m //  MyImagePicker1.0 // //  Created by Mac on 14-7-14. //  Copyright (c) 201 ...

  9. 学了这四招,你在Linux上观看Netflix视频不发愁

    导读 一份崭新的Linux发行版已经安装到你的电脑上,你完全准备好使用免费开源办公软件处理长时间的工作.但是你可能会问自己:"难道除了工作,就没有乐趣可言?我就是想观看Netflix视频!& ...

  10. Nop关键技术点概述

    数据访问层 Nop.Data项目包含用于与数据库及其它数据存储交互的类和功能.Nop.Data类库帮助将数据访问逻辑和业务对象分离.Nop使用的是Entity Framework Code First ...