概要

  • 在sdn下,控制平面基于网络测量的的数据控制网络,而细粒度的管理得益于细粒度的测量数据。针对sdn环境下的细粒度测量(识别具体应用程序),可以实现对细粒度的流量管控。
  • 设计了识别系统SBAR,对数据流进行测量,识别出具体应用程序并得到它们的网络数据。针对流分类,SBAR以应用程序协议为参照,使用了机器学习的算法。 针对web和加密流量,使用深度包检测检测包的负载以识别应用程序。同时SBAR利用了OpenFlow提供的测量数据识别应用,交换机利用南向接口向控制器传输数据。最后使用GUI对得到的数据进行整合处理得到全网测量数据。经过验证,SBAR检测的准确率可以达到90%以上(由于使用DPI和ML可能有较大的资源开销和时延)。

Background

  • In the Software-Defined Networking (SDN) paradigm, it is essential to perform comprehensive traffic monitoring in order to provide the control plane with an accurate view of the network state.
  • This enables to perform such an effective fine-grained network management
    with different purposes (e.g., traffic engineering, security).

Related Work

  • NetFlow/IPFIX:There are a plenty of tools based on Netflow that harness the flow-level measurement.
  • Flows are often labeled (e.g., by protocol)
    using port-based classification techniques which is gradually obsoleted beacause it is quite common to find very diverse applications operating over
    the same application protocols(无法从端口号分辨出具体的应用程序)
  • QoE:the QoE perceived by end-users significantly depends on the type of application and the QoS level provided by the network (e.g., bandwidth, delay).(QoE感知取决于应用程序类型以及QoS级别)
  • Deep Packet Inspection (DPI)
    typically achieves very accurate traffic classification by inspecting the packet payloads. However, applying DPI over all the packets traversing a network is often too resource consuming (根据负载分类,资源开销过大)
  • Machine Learning (ML) classifiers were proposed with the aim of alleviating the
    processing burden.Use **features* up to the transport layer to classify the traffic, useless when applied to distinguish among different applications generating traffic over the same protocol(根据特征分类,无法从相同协议分辨出不同程序)

Solution

  • We present SBAR, a monitoring system compliant with OpenFlow that provides flow-level measurement
  • Classify the traffic at two different levels:In the Software-Defined Networking (SDN) paradigm, it is essential to perform comprehensive traffic monitoring in order to provide the control plane with an accurate view of the network state. This
    enables to perform such an effective fine-grained network management with different purposes (e.g., traffic engineering, security).
  • (i) every monitored flow is classified by application protocol,
  • (ii) for web and encrypted traffic, we apply specific DPI techniques to identify the applications (端口号相同要通过负载分辨出具体的应用程序)
    generating each flow

  • Reduce the processing overhead in the controller(s) and the memory consumption in switches to maintain the measurements

Implement

Openflow

  • Leverage the particularities of OpenFlow networks to efficiently implement a combination of techniques based on ML and DPI to accurately classify the traffic in the controller.
  • Leverage the support of OpenFlow to maintain the flow measurements (# of
    packets and bytes, and duration) in the flow tables of the switches
  • OpenFlow provides an interface that permits to report the measurements to the controller(s) when some predefined timeouts (idle and hard) expire
  • Make use of ultiple tables of OpenFlow
    to decouple the operation of this module from other modules executing
    different network tasks (e.g., forwarding) in the controller.

Others

  • Flow sampling using only native features of OpenFlow, which enables to address
    common scalability issues in OpenFlow-based networks.
  1. Per-flow classification by application protocols (e.g., SMTP, SSH) using a ML model
  2. For web and encrypted flows, it applies specific DPI techniques [1, 2] to identify the applications (e.g., Netflix, Facebook) generating traffic.
  • 通过给控制器指定规则,只提取前几个HTTP等协议的包头信息,然后根据某种算法推断出对应的应用程序,节省了开销
  • GUI用于处理SBAR得到的flow-level reports infer high-level traffic
    statistics

Advantages

the classification accuracy acheives 90% or higher.

Disadvantages

Because of the DPI and ML, the resource overhead and latency probably are high(I guess)

Reading SBAR SDN flow-Based monitoring and Application Recognition的更多相关文章

  1. 精读 SBAR SDN flow-Based monitoring and Application Recognition

    目录 架构 测量模块 分类模块 具体实现 实验:最后接入巴塞罗那的校园网流量测试: SBAR: SDN flow-Based monitoring and Application Recognitio ...

  2. Risk Adaptive Information Flow Based Access Control

    Systems and methods are provided to manage risk associated with access to information within a given ...

  3. Paper-[acmi 2015]Image based Static Facial Expression Recognition with Multiple Deep Network Learning

    [acmi 2015]Image based Static Facial Expression Recognition with Multiple Deep Network Learning ABST ...

  4. [Flow] Declare types for application

    In Flow, you can make global declarion about types. Run: flow init It will generate .flowconfig file ...

  5. Paper reading: High-Fidelity Pose and Expression Normalization for Face Recognition in the Wild(HPEN)

    1. Introduction 人脸识别受到各种因素影响,其中最重要的两个影响是 pose 和 expression, 这两个因素会对 intra-person 变化产生极大的影响, 有时候甚至会超过 ...

  6. 3.3 Execution Flow of a DDD Based Application 基于DDD的应用程序执行流程

    3.3 Execution Flow of a DDD Based Application 基于DDD的应用程序执行流程 The figure below shows a typical reques ...

  7. Monitoring and Tuning the Linux Networking Stack: Receiving Data

    http://blog.packagecloud.io/eng/2016/06/22/monitoring-tuning-linux-networking-stack-receiving-data/ ...

  8. Intel® Threading Building Blocks (Intel® TBB) Developer Guide 中文 Parallelizing Data Flow and Dependence Graphs并行化data flow和依赖图

    https://www.threadingbuildingblocks.org/docs/help/index.htm Parallelizing Data Flow and Dependency G ...

  9. [Windows Azure] Adding Sign-On to Your Web Application Using Windows Azure AD

    Adding Sign-On to Your Web Application Using Windows Azure AD 14 out of 19 rated this helpful - Rate ...

随机推荐

  1. JQuery实现获取多个input输入框的值,并存放在一个数组中

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  2. 理解position:relative

    前言:position有5个属性:static.absolute.relative.fixed和inherit.本篇博客主要介绍relative属性,因为似乎很多人对这个属性的理解很模糊,而且不清楚r ...

  3. js笔记 -- toString() 和String()

    将一个值转换成一个字符串有两种方法,一是使用toString()方法,二是使用转型函数String().下面是一些需要注意的问题: 1,大多值都有toString()方法,因为toString是Obj ...

  4. 修改zabbix为中文,并解决乱码问题(三)

    当Zabbix安装完成后,默认则是英文界面,有的人看英文不习惯,现在将其改为中文界面 一.修改为中文 1.打开Zabbix界面,Administrator-Users 选择语言-Chinese(zh_ ...

  5. SVN合并时报错:合并跟踪不允许丢失子树Merge tracking not allowed with missing subtrees; try restoring these items

    使用的是TortoiseSVN; Merge tracking not allowed with missing subtrees; try restoring these items 下面会有跟着几 ...

  6. C# winfrom DataGridView用法

    DataGridView列的宽度自动调整,可以使用DataGridView.AutoSizeColumnsMode属性实现. 下面的代码就是列的宽度根据Header和所有单元格的内容自动调整的. // ...

  7. 设置OWA访问HTTP到HTTPS的重定向

    需求:公司要求使用Http://mail.ever.com的方式来统一访问邮箱,所以需要进行相关的设置,将访问需求重定向到https://extest.ever.com/owa 首先在DNS里的eve ...

  8. [转]unix/linux中的dup()系统调用

    [转]unix/linux中的dup()系统调用    在linux纷繁复杂的内核代码中,sys_dup()的代码也许称得上是最简单的之一了,但是就是这么一个简单的系统调用,却成就了unix/linu ...

  9. iOS模拟器命令xcrun simctl系列(自动化测试)

    1. 列出安装的可用的模拟器: xcrun instruments -s [如:iPhone 5s (9.0) [00AB3BB6-C5DC-45C7-804F-6B88F57C2AFF] (Simu ...

  10. cheerio数据抓取

    很多语言都能写个爬虫抓取数据,js自然也可以,使用cheerio可以支持css检索,较快捷的获取需要的数据.首先,先把node.js给安装了.可到官网下载.安装好node.js后,使用npm安装che ...