PCA简单实现
'''
总结一下PCA的算法步骤:
设有m条n维数据。
1)将原始数据按列组成n行m列矩阵X
2)将X的每一行(代表一个属性字段)进行零均值化,即减去这一行的均值
3)求出协方差矩阵C=1/m*(XX^T)
4)求出协方差矩阵的特征值及对应的特征向量
5)将特征向量按对应特征值大小从上到下按行排列成矩阵,取前k行组成矩阵P
6)Y=PX即为降维到k维后的数据
# http://blog.codinglabs.org/articles/pca-tutorial.html
# https://zhuanlan.zhihu.com/p/37777074
'''
import numpy as np
# 1. 如果原始数据是按照行排列的:
'''
def PCA(original_X,componens_k):
# 1. 首先获得原始数据X的均值,如果数据按照行排列,特征按照列排列,则axis=0; 否则axis=1
norm_X = X - np.mean(original_X,axis=0) # 去均值之后的数据X
# 2. 计算协方差矩阵,由于散列矩阵和协方差矩阵仅相差一个系数,对特征向量的求解不影响,因此可以不加系数
scatter_matrix = np.dot(np.transpose(norm_X),norm_X) # 由于这里数据是按照列排布的,所以C = X^T·X
# 3. 计算协方差矩阵(散列矩阵)的特征值和特征向量
eig_val, eig_vec = np.linalg.eig(scatter_matrix)
# 4. 将各自的各自的特征值和特征向量绑定在一起按照从大到小的顺序排列
eig_pairs = [(np.abs(eig_val[i]), eig_vec[:, i]) for i in range(X.shape[1])]
eig_pairs.sort(reverse=True)
# 5. 按照特征值从大到小的排列顺序得到的特征向量,取前K行组合成降维矩阵P
dim_re_matrix = np.array([ele[1] for ele in eig_pairs[:componens_k]])
dim_re_data = np.dot(norm_X,np.transpose(dim_re_matrix))
return dim_re_data
'''
# 2. 如果原始数据是按照列排列的:
def PCA(original_X,componens_k):
original_X = np.transpose(original_X) # 原始数据是行排列的,这里使用转置将其转化为列排列进行试验
norm_X = original_X - np.mean(original_X,axis=1,keepdims=True)
covariance_matrix = (1 / norm_X.shape[1]) * np.dot(norm_X,np.transpose(norm_X))
eig_val, eig_vec = np.linalg.eig(covariance_matrix)
eig_pairs = [(np.abs(eig_val[i]),eig_vec[:,i]) for i in range(norm_X.shape[0])]
eig_pairs.sort(reverse=True)
dim_re_matrix = np.array([ele[1] for ele in eig_pairs[:componens_k]])
dim_re_data = np.dot(dim_re_matrix,norm_X)
return dim_re_data # [[-2.12132034 -0.70710678 0. 2.12132034 0.70710678]]
# 3. 使用sklearn的PCA
'''
from sklearn.decomposition import PCA
import numpy as np
def PCA_(original_X,components_k):
pca = PCA(n_components=1)
pca.fit(original_X)
return pca.transform(original_X)
'''
if __name__ == '__main__':
X = np.array([[-1, -2], [-1, 0], [0, 0], [2, 1], [0, 1]])
# X = np.array([[-1, 1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
print(PCA_(X, 1))
PCA简单实现的更多相关文章
- 初识PCA数据降维
PCA要做的事降噪和去冗余,其本质就是对角化协方差矩阵. 一.预备知识 1.1 协方差分析 对于一般的分布,直接代入E(X)之类的就可以计算出来了,但真给你一个具体数值的分布,要计算协方差矩阵,根据这 ...
- 主成分分析(PCA)
相对与网上很多人分享的有关PCA的经历,我第一次接触PCA却不是从人脸表情识别开始的,但我所在的实验室方向之一是人脸的研究,最后也会回到这个方向上来吧. PCA(principal component ...
- 机器学习实战基础(二十三):sklearn中的降维算法PCA和SVD(四) PCA与SVD 之 PCA中的SVD
PCA中的SVD 1 PCA中的SVD哪里来? 细心的小伙伴可能注意到了,svd_solver是奇异值分解器的意思,为什么PCA算法下面会有有关奇异值分解的参数?不是两种算法么?我们之前曾经提到过,P ...
- <学习opencv>opencv函数
/*=========================================================================*/ // openCV中的函数 /*====== ...
- 主成分分析 (PCA) 与其高维度下python实现(简单人脸识别)
Introduction 主成分分析(Principal Components Analysis)是一种对特征进行降维的方法.由于观测指标间存在相关性,将导致信息的重叠与低效,我们倾向于用少量的.尽可 ...
- PCA检测人脸的简单示例_matlab实现
PCA检测人脸的简单示例,matlab R2009b上实现训练:训练用的20副人脸: %训练%Lx=X'*Xclear;clc;train_path='..\Data\TrainingSet\';ph ...
- PCA(主成分分析)的简单理解
PCA(Principal Components Analysis),它是一种“投影(projection)技巧”,就是把高维空间上的数据映射到低维空间.比如三维空间的一个球,往坐标轴方向投影,变成了 ...
- 简单推导 PCA
考虑二维数据降低到一维的例子,如下图所示: 最小化投影方差(maximize projected variance): 1N∑n=1N(uuT1xn−uuT1x¯)=uuT1Suu1,s.t.uuT1 ...
- 主成分分析(PCA)原理总结
主成分分析(Principal components analysis,以下简称PCA)是最重要的降维方法之一.在数据压缩消除冗余和数据噪音消除等领域都有广泛的应用.一般我们提到降维最容易想到的算法就 ...
随机推荐
- <<高级计算机网络>>(Advaned Computer Networks) 徐恪 徐明伟 陈文龙 马东超
目录 第1章 计算机网络与Internet1 1.1 引言1 1.2 Internet发展历史2 1.2.1 互联网发展的主要阶段4 1.2.2 互联网在中国的发展5 1.2.3 互联网主要创新5 1 ...
- Basic4android v3.50 发布
这次发布的主要是debug 的增强.说实话,在这一方面B4a 比delphi做的要好.希望delphi 在新的版本里面 能进一步加强. I'm happy to release Basic4andro ...
- centos环境下输入命令不能有中文那么我怎么插入中文数据到数据库
centos环境下输入命令不能有中文那么我怎么插入中文数据到数据库 如下图: 首先查看是否安装了中文语言支持组件 yum grouplist 没有的话安装 yum install Chinese Su ...
- pom.xml的继承、聚合与依赖
原文地址:https://my.oschina.net/zh119893/blog/232896 6.1 简介 pom.xml文件是Maven进行工作的主要配置文件.在这个文件中我们可以配置M ...
- 异步IO原理及相应函数
何为异步IO? (1)几乎可以认为:异步IO就是操作系统用软件实现的一套中断响应系统.(2)异步IO的工作方法是:我们当前进程注册一个异步IO事件(使用signal注册一个信号 SIGIO的处理函数) ...
- (博弈 sg入门)kiki's game -- hdu -- 2147
链接: http://acm.hdu.edu.cn/showproblem.php?pid=2147 题意: 在一个n*m的棋盘上,从 (1,m),即右上角开始向左下角走. 下棋者只能往左边(lef ...
- Centos 7 搭建wordpress
1.安装mysql 详情见:http://www.cnblogs.com/jw35/p/6044170.html 2.关闭firewalld与selinux systemctl stop firewa ...
- 【StatLearn】统计学习中knn算法的实验(1)
Problem: Develop a k-NN classifier with Euclidean distance and simple voting Perform 5-fold cross va ...
- [51单片机] nRF24L01 无线模块 串口法命令 通过无线控制另一个的灯
>_<!概述: 这是在上一个的基础上通过按键发送4种不同命令来控制接收端的LED灯亮的改进版(上一个:http://www.cnblogs.com/zjutlitao/p/3840013. ...
- 通过代码去执行testNG用例
背景 用testNG去编写的测试用例,通过@Test去执行用例,一般本地都是通过IDE去执行相应的方法,持续集成的话,都是通过maven来执行或指定testNG.xml执行,但是如果想通过接口/界面去 ...