Description

某公司估计市场在第i个月对某产品的需求量为Ui,已知在第i月该产品的订货单价为di,上个月月底未销完的单位产品要付存贮费用m,假定第一月月初的库存量为零,第n月月底的库存量也为零,问如何安排这n个月订购计划,才能使成本最低?每月月初订购,订购后产品立即到货,进库并供应市场,于当月被售掉则不必付存贮费。假设仓库容量为S。

Input

第1行:n, m, S (0<=n<=50, 0<=m<=10, 0<=S<=10000)
第2行:U1 , U2 , ... , Ui , ... , Un (0<=Ui<=10000)
第3行:d1 , d2 , ..., di , ... , dn (0<=di<=100)

Output

只有1行,一个整数,代表最低成本

Sample Input

3 1 1000
2 4 8
1 2 4

Sample Output

34
 
一道比餐巾计划垃圾到不知道到哪里去的题
(好吧感觉和餐巾计划是一个题)
S---每一天 ,INF,当日单价
每一天---T,当日需求,0
每一天---下一天,S,m
啊做水题真爽
 
 #include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<queue>
#define id(x,y) (x-1)*m+y
#define N (10000+10)
#define M (1000000+10)
using namespace std;
bool used[N];
int n,m,S,s,e,u[],d[];
int num_edge,head[N];
int dis[N],INF,pre[N];
queue<int>q;
struct node
{
int to,next,Flow,Cost;
} edge[M*]; void add(int u,int v,int l,int c)
{
edge[++num_edge].to=v;
edge[num_edge].next=head[u];
edge[num_edge].Flow=l;
edge[num_edge].Cost=c;
head[u]=num_edge;
} bool Spfa(int s,int e)
{
memset(dis,0x7f,sizeof(dis));
memset(pre,-,sizeof(pre));
dis[s]=;
used[s]=true;
q.push(s);
while (!q.empty())
{
int x=q.front();
q.pop();
for (int i=head[x]; i!=; i=edge[i].next)
if (dis[x]+edge[i].Cost<dis[edge[i].to] && edge[i].Flow>)
{
dis[edge[i].to]=dis[x]+edge[i].Cost;
pre[edge[i].to]=i;
if (!used[edge[i].to])
{
used[edge[i].to]=true;
q.push(edge[i].to);
}
}
used[x]=false;
}
return dis[e]!=INF;
} int MCMF(int s,int e)
{
int Fee=;
while (Spfa(s,e))
{
int d=INF;
for (int i=e; i!=s; i=edge[((pre[i]-)^)+].to)
d=min(d,edge[pre[i]].Flow);
for (int i=e; i!=s; i=edge[((pre[i]-)^)+].to)
{
edge[pre[i]].Flow-=d;
edge[((pre[i]-)^)+].Flow+=d;
}
Fee+=d*dis[e];
}
return Fee;
} int main()
{
memset(&INF,0x7f,sizeof(INF));
s=,e=;
scanf("%d%d%d",&n,&m,&S);
for (int i=; i<=n; ++i)
scanf("%d",&u[i]);
for (int i=; i<=n; ++i)
scanf("%d",&d[i]);
for (int i=; i<=n; ++i)
{
add(s,i,INF,d[i]);
add(i,s,,-d[i]);
add(i,e,u[i],);
add(e,i,,);
if (i==n) break;
add(i,i+,S,m);
add(i+,i,,-m);
}
printf("%d",MCMF(s,e));
}

2424. [HAOI2010]订货【费用流】的更多相关文章

  1. BZOJ 2424: [HAOI2010]订货 费用流

    2424: [HAOI2010]订货 Description 某公司估计市场在第i个月对某产品的需求量为Ui,已知在第i月该产品的订货单价为di,上个月月底未销完的单位产品要付存贮费用m,假定第一月月 ...

  2. 【bzoj2424】[HAOI2010]订货 费用流

    原文地址:http://www.cnblogs.com/GXZlegend/p/6825296.html 题目描述 某公司估计市场在第i个月对某产品的需求量为Ui,已知在第i月该产品的订货单价为di, ...

  3. BZOJ2424 [HAOI2010]订货 - 费用流

    题解 (非常裸的费用流 题意有一点表明不清: 该月卖出的商品可以不用算进仓库里面. 然后套上费用流模板 代码 #include<cstring> #include<queue> ...

  4. BZOJ 2424: [HAOI2010]订货(最小费用最大流)

    最小费用最大流..乱搞即可 ------------------------------------------------------------------------------ #includ ...

  5. BZOJ 2424: [HAOI2010]订货

    2424: [HAOI2010]订货 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 915  Solved: 639[Submit][Status][ ...

  6. 2424: [HAOI2010]订货

    2424: [HAOI2010]订货 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 922  Solved: 642[Submit][Status][ ...

  7. BZOJ 2424: [HAOI2010]订货(费用流)

    裸的费用流了= =从源点向每个点连费用为di,从汇点向每个点连流量为ui,每个点向下一个点连费用为m,流量为s的边就行了 CODE: #include<cstdio>#include< ...

  8. bzoj 2424: [HAOI2010]订货 (费用流)

    直接费用流,天数就是点数 type arr=record toward,next,cap,cost:longint; end; const maxm=; maxn=; mm=<<; var ...

  9. BZOJ 2424 DP OR 费用流

    思路: 1.DP f[i][j]表示第i个月的月底 还剩j的容量 转移还是相对比较好想的-- f[i][j+1]=min(f[i][j+1],f[i][j]+d[i]); if(j>=u[i+1 ...

随机推荐

  1. 文件下载(Servlet/Struts2)

    文件上传(Servlet/Struts2/SpringMVC)的链接:http://www.cnblogs.com/ghq120/p/8312944.html 文件下载 Servlet实现 目录结构 ...

  2. JavaWeb中监听器

     一.事件源:三大域! ServletContext 生命周期监听:ServletContextListener,它有两个方法,一个在创建时调用,一个在销毁时调用: void contextIniti ...

  3. 微软2016校园招聘在线笔试-Professor Q's Software

    题目2 : Professor Q's Software 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 Professor Q develops a new softw ...

  4. [POI2007]EGZ-Driving Exam

    能到达所有路的充要条件是能到达左右两端的路 用vector反向建边对每条路左右分别求个最长不上升子序列 预处理出每条路向左向右分别需要多建多少路才能到达最左端和最右端 然后跑个\(\Theta(n)\ ...

  5. Luogu4433:[COCI2009-2010#1] ALADIN(类欧几里德算法)

    先套用一个线段树维护离散化之后的区间的每一段的答案 那么只要考虑怎么下面的东西即可 \[\sum_{i=1}^{n}(A\times i \ mod \ B)\] 拆开就是 \[\sum_{i=1}^ ...

  6. 多项式乘法,FFT与NTT

    多项式: 多项式?不会 多项式加法: 同类项系数相加: 多项式乘法: A*B=C $A=a_0x^0+a_1x^1+a_2x^2+...+a_ix^i+...+a_{n-1}x^{n-1}$ $B=b ...

  7. curl 模拟发起百度地图API post请求

    注:开始做的是get请求,比较简单,然后又查询了一番就做成了post请求,有几个地方特别说明一下: 一,$address,是必须传的,$city可不传: 二,ak跟之前的key一直,需要申请,我的好像 ...

  8. Java期中项目杂七杂八

    这是一篇草稿,嗯,等结项以后大概可能会整理其中的一部分吧…… 杂项 1. 用Idea创建Maven项目:直接选就行:至于商定好的Eclipse要怎么做再说…… 2. 联网依赖:选择我们最熟的okhtt ...

  9. ButterKnife 初体验

    ButterKnife 环境搭建 在project的build.gradle文件中添加依赖的插件 //ButterKnife 的插件 // classpath 'com.jakewharton:but ...

  10. 【Android Studio使用教程1】Android Studio导入项目的几种方法

    本篇教程中使用到的Android Studio版本为1.0, Eclipse ADT版本23.0.4.请尝试更新到该版本. Android Studio默认使用 Gradle 构建项目, Eclips ...