「CF1025D Recovering BST」
郑州讲过的题了
发现这是一个二叉搜索树,给出的还是中序遍历,我们很自然的想到我们需要可以用一个\(f[i][j][k](k\in[i,j])\)来表示区间\([i,j]\)能不能形成以\(k\)为根的二叉搜索树
就是区间的\(dp\)的套路我们还需要枚举一下树根,复杂度高达\(O(n^5)\)
很不可行啊
换一个思路,我们用\(f[i][j][0/1]\)表示区间\([i,j]\)能否形成一棵左子树/右子树
如果形成的是左子树,自然树根是\(j+1\),如果是右子树,根自然是\(i-1\)
于是我们枚举区间\([i,j]\),枚举和\([i,j]\)形成一棵树的另一个区间,由于这个区间已经确定了左端点或者右端点,我们\(O(n^3)\)就能完成枚举
之后如果能拼接成一棵新树,树根自然也就知道了,转移过去就好了
代码
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
#define LL long long
#define re register
#define maxn 705
inline int read() {
char c=getchar();int x=0;while(c<'0'||c>'9') c=getchar();
while(c>='0'&&c<='9') x=(x<<3)+(x<<1)+c-48,c=getchar();return x;
}
int gcd(int a,int b) {if(!b) return a;return gcd(b,a%b);}
int n,a[maxn];
int e[maxn][maxn];
int f[maxn][maxn][2];
int main() {
n=read();
for(re int i=1;i<=n;i++) a[i]=read();
for(re int i=1;i<=n;i++)
for(re int j=i+1;j<=n;j++)
e[i][j]=e[j][i]=(gcd(a[i],a[j])!=1);
for(re int i=1;i<=n;i++) {
if(i>1&&e[i-1][i]) f[i][i][1]=1;
if(i<n&&e[i][i+1]) f[i][i][0]=1;
}
for(re int p=1;p<n;p++) {
for(re int i=1;i<=n;i++) {
int j=i+p-1;
if(f[i][j][1]) {
for(re int k=1;k<=i-2;k++)
if(f[k][i-2][0]) {
if(e[k-1][i-1]) f[k][j][1]=1;
if(e[j+1][i-1]) f[k][j][0]=1;
}
if(e[i-2][i-1]) f[i-1][j][1]=1;
if(e[i-1][j+1]) f[i-1][j][0]=1;
}
if(f[i][j][0]) {
for(re int k=j+2;k<=n;k++)
if(f[j+2][k][1]) {
if(e[j+1][k+1]) f[i][k][0]=1;
if(e[j+1][i-1]) f[i][k][1]=1;
}
if(e[j+1][j+2]) f[i][j+1][0]=1;
if(e[j+1][i-1]) f[i][j+1][1]=1;
}
}
}
f[1][0][0]=1;
int flag=0;
for(re int i=2;i<=n;i++)
if(f[i][n][1]&&f[1][i-2][0]) flag=1;
flag|=f[1][n-1][0];
puts(flag?"Yes":"No");
return 0;
}
「CF1025D Recovering BST」的更多相关文章
- CF1025D Recovering BST
题意:给定序列,问能否将其构成一颗BST,使得所有gcd(x, fa[x]) > 1 解:看起来是区间DP但是普通的f[l][r]表示不了根,f[l][r][root]又是n4的会超时,怎么办? ...
- 对于前端,「微信小程序」其实不美好
微信小程序开放公测了,9月底我曾经写过一篇 「微信小程序」来了,其中最后一句:"谢天谢地,我居然还是个前端". 这种火爆的新事物总是令人激动,感谢这个时代. 但是,当我真作为开发者 ...
- macOS安装「oh my zsh」
目前常用的 Linux 系统和 OS X 系统的默认 Shell 都是 bash,但是真正强大的 Shell 是深藏不露的 zsh, 这货绝对是马车中的跑车,跑车中的飞行车,史称『终极 Shell』, ...
- 报名|「OneAPM x DaoCloud」技术公开课:Docker性能监控!
如今,越来越多的公司开始 Docker 了,「三分之二的公司在尝试了 Docker 后最终使用了它」,也就是说 Docker 的转化率达到了 67%,同时转化时长也控制在 60 天内. 既然 Dock ...
- 企业运营对 DevOps 的「傲慢与偏见」
摘要:出于各种原因,并非所有人都信任 DevOps .有些人觉得 DevOps 只不过给开发者改善产品提供了一个途径而已,还有的人觉得 DevOps 是一堆悦耳的空头支票,甚至有人认为 DevOps ...
- 「前端开发者」如何把握住「微信小程序」这波红利?
由于前两周一直在老家处理重要事情,虽然朋友圈被「微信小程序」刷爆了,但并没有时间深入了解. 昨天回广州之后,第一件事情就是把「微信小程序」相关的文章.开发文档.设计规范全部看了一遍,基本上明白了「微信 ...
- 「花田对」CSDN程序员专场——谁来拯救技术宅!_豆瓣
「花田对」CSDN程序员专场--谁来拯救技术宅!_豆瓣 「花田对」CSDN程序员专场--谁来拯救技术宅!
- Objective-C 实用关键字详解1「面试、工作」看我就 🐒 了 ^_^.
在写项目 或 阅读别人的代码(一些优秀的源码)中,总能发现一些常见的关键字,随着编程经验的积累大部分还是知道是什么意思 的. 相信很多开发者跟我当初一样,只是基本的常用关键字定义属性会使用,但在关键字 ...
- LOJ6003 - 「网络流 24 题」魔术球
原题链接 Description 假设有根柱子,现要按下述规则在这根柱子中依次放入编号为的球. 每次只能在某根柱子的最上面放球. 在同一根柱子中,任何2个相邻球的编号之和为完全平方数. 试设计一个算法 ...
随机推荐
- jQuery——随笔
jQuery——随笔 jQuery的parseInt方法 在使用parseInt方法的时候要注意解析失败的问题,解析失败返回的是NaN 计算sum=sum+parseInt(num);的时候可以报错, ...
- winform从table1获取需要的数据转存储到table2中
小技术一个,记录一下 ,以下记录的是用两种方式来实现,数据表的转移 table转存数据之前首先要明确两个函数: Add():是指在最后一行添加一行 InsertAt():可以插入到表中的指定行 需求: ...
- 九、sparkStream的scala示例
简介 sparkStream官网:http://spark.apache.org/docs/latest/streaming-programming-guide.html#overview spark ...
- 【SSH网上商城项目实战17】购物车基本功能的实现
转自:https://blog.csdn.net/eson_15/article/details/51418350 上一节我们将商品的详细页面做完了,并使用了Hibernate的二级缓存加载详细页面来 ...
- BZOJ2656 [Zjoi2012]数列
Description 小白和小蓝在一起上数学课,下课后老师留了一道作业,求下面这个数列的通项公式: $$\begin{aligned}A_0 &= 0\\A_1 &= 1\\A_{2 ...
- 01:谁考了第k名 个人博客:doubleq.win
个人博客:doubleq.win 01:谁考了第k名 查看 提交 统计 提问 总时间限制: 1000ms 内存限制: 65536kB 描述 在一次考试中,每个学生的成绩都不相同,现知道了每个学生的 ...
- C++学习笔记(8)----C++类的大小
C++类的大小 (i) 如下代码: #include<iostream> using namespace std; class CBase { }; class CDerive :publ ...
- 【分享】BS大神的C++ 11 keynotes
看到infoQ上面有BS大神的keynotes讲C++ 11的,有点长,但是值得一看. http://www.infoq.com/presentations/Cplusplus-11-Bjarne ...
- 线程Event事件
事件(event) 事件是不同线程之间的同步对象 enent可以通过设置.等待.清除一个标识(flag),来进行线程间的控制 线程可以通过获取这个标志位(flag)的状态(设置或未设置)来控制线程 事 ...
- maven(16)-灵活的环境构建
多个环境 一个项目,在家的时候可能会在本机上运行,在公司可能在内网测试环境运行,上线后会在生产环境运行,在不同的环境中会有一些配置是不一样的,至少数据库就不一样.如果每换一个环境就去改所有配置太 ...