机器学习基石笔记:Homework #2 decision stump相关习题
原文地址:http://www.jianshu.com/p/4bc01760ac20
问题描述
程序实现
17-18
# coding: utf-8
import numpy as np
import matplotlib.pyplot as plt
def sign(n):
if(n>0):
return 1
else:
return -1
def gen_data():
data_X=np.random.uniform(-1,1,(20,1))# [-1,1)
data_Y=np.zeros((20,1))
idArray=np.random.permutation([i for i in range(20)])
for i in range(20):
if(i<20*0.2):
data_Y[idArray[i]][0]=-sign(data_X[idArray[i]][0])
else:
data_Y[idArray[i]][0] = sign(data_X[idArray[i]][0])
data=np.concatenate((data_X,data_Y),axis=1)
return data
def decision_stump(dataArray):
minErrors=20
min_s_theta_list=[]
num_data=dataArray.shape[0]
data=dataArray.tolist()
data.sort(key=lambda x:x[0])
for s in [-1.0,1.0]:
for i in range(num_data):
if(i==num_data-1):
theta=(data[i][0]+1.0)/2
else:
theta=(data[i][0]+data[i+1][0])/2
errors=0
for i in range(20):
pred=s*sign(data[i][0]-theta)
if(pred!=data[i][1]):
errors+=1
if(minErrors>errors):
minErrors=errors
min_s_theta_list=[]
elif(minErrors<errors):
continue
min_s_theta_list.append((s, theta))
i=np.random.randint(low=0,high=len(min_s_theta_list))
min_s,min_theta=min_s_theta_list[i]
return minErrors,min_s,min_theta
def computeEinEout(minErrors,min_s,min_theta):
Ein=minErrors/20
Eout=0.5+0.3*min_s*(abs(min_theta)-1)
return Ein,Eout
if __name__=="__main__":
Ein_list=[]
Eout_list=[]
for i in range(5000):
dataArray=gen_data()
minErrors,min_s,min_theta=decision_stump(dataArray)
Ein,Eout=computeEinEout(minErrors,min_s,min_theta)
Ein_list.append(Ein)
Eout_list.append(Eout)
# show results
# 17 & 18
print("the average Ein: ",sum(Ein_list)/5000)
print("the average Eout: ",sum(Eout_list)/5000)
plt.figure(figsize=(16,6))
plt.subplot(121)
plt.hist(Ein_list)
plt.xlabel("Ein")
plt.ylabel("frequency")
plt.subplot(122)
plt.hist(Eout_list)
plt.xlabel("Eout")
plt.ylabel("frequency")
plt.savefig("EinEout.png")
19-20
# coding: utf-8
import numpy as np
def read_data(dataFile):
with open(dataFile, 'r') as file:
data_list = []
for line in file.readlines():
line = line.strip().split()
data_list.append([float(l) for l in line])
data_array = np.array(data_list)
return data_array
def predict(s,theta,dataX):
num_data=dataX.shape[0]
res=s*np.sign(dataX-theta)
return res
def decision_stump(dataArray):
min_s_theta_list=[]
num_data=dataArray.shape[0]
minErrors=num_data
data=dataArray.tolist()
data.sort(key=lambda x:x[0])
dataArray=np.array(data)
dataX=dataArray[:,0].reshape(num_data,1)
dataY=dataArray[:,1].reshape(num_data,1)
for s in [-1.0,1.0]:
for i in range(num_data):
if(i==num_data-1):
theta=(dataX[i][0]*2+1)/2
else:
theta=(dataX[i][0]+dataX[i+1][0])/2
pred=predict(s,theta,dataX)
errors=np.sum(pred!=dataY)
if(minErrors>errors):
minErrors=errors
min_s_theta_list=[]
elif(minErrors<errors):
continue
min_s_theta_list.append((s, theta))
i=np.random.randint(low=0,high=len(min_s_theta_list))
min_s,min_theta=min_s_theta_list[i]
return minErrors,min_s,min_theta
def best_of_best(candidate):
candidate.sort(key=lambda x:x[1])
counts=0
for i in range(len(candidate)):
if(candidate[i][1]!=candidate[0][1]):
break
counts+=1
i=np.random.randint(low=0,high=counts)
return candidate[i][0],candidate[i][1],candidate[i][2],candidate[i][3]
if __name__=="__main__":
data_array=read_data("hw2_train.dat")
num_data=data_array.shape[0]
num_dim=data_array.shape[1]-1
candidate=[]
dataY=data_array[:,-1].reshape(num_data,1)
for i in range(num_dim):
dataX=data_array[:,i].reshape(num_data,1)
min_errors,min_s,min_theta=decision_stump(np.concatenate((dataX,dataY),axis=1))
candidate.append([i,min_errors,min_s,min_theta])
min_id,min_errors,min_s,min_theta=best_of_best(candidate)
print("the optimal decision stump:\n","s: ",min_s,"\ntheta: ",min_theta)
print("the Ein of the optimal decision stump:\n",min_errors/num_data)
test_array=read_data("hw2_test.dat")
num_test=test_array.shape[0]
testY=test_array[:,-1].reshape(num_test,1)
num_dim=test_array.shape[1]-1
testX=test_array[:,min_id].reshape(num_test,1)
pred=predict(min_s,min_theta,testX)
print("the Eout of the optimal decision stump by Etest:\n",np.sum(pred!=testY)/num_test)
运行结果
17-18
19-20
机器学习基石笔记:Homework #2 decision stump相关习题的更多相关文章
- 机器学习基石笔记:Homework #1 PLA&PA相关习题
原文地址:http://www.jianshu.com/p/5b4a64874650 问题描述 程序实现 # coding: utf-8 import numpy as np import matpl ...
- 机器学习基石笔记:Homework #4 Regularization&Validation相关习题
原文地址:https://www.jianshu.com/p/3f7d4aa6a7cf 问题描述 程序实现 # coding: utf-8 import numpy as np import math ...
- 机器学习基石笔记:Homework #3 LinReg&LogReg相关习题
原文地址:http://www.jianshu.com/p/311141f2047d 问题描述 程序实现 13-15 # coding: utf-8 import numpy as np import ...
- 机器学习基石:Homework #0 SVD相关&常用矩阵求导公式
- 林轩田机器学习基石笔记1—The Learning Problem
机器学习分为四步: When Can Machine Learn? Why Can Machine Learn? How Can Machine Learn? How Can Machine Lear ...
- 机器学习基石笔记:01 The Learning Problem
原文地址:https://www.jianshu.com/p/bd7cb6c78e5e 什么时候适合用机器学习算法? 存在某种规则/模式,能够使性能提升,比如准确率: 这种规则难以程序化定义,人难以给 ...
- 机器学习基石笔记:04 Feasibility of Learning
原文地址:https://www.jianshu.com/p/f2f4d509060e 机器学习是设计算法\(A\),在假设集合\(H\)里,根据给定数据集\(D\),选出与实际模式\(f\)最为相近 ...
- 机器学习基石笔记:03 Types of Learning
原文地址:https://www.jianshu.com/p/86b2a9cef742 一.学习的分类 根据输出空间\(Y\):分类(二分类.多分类).回归.结构化(监督学习+输出空间有结构): 根据 ...
- 机器学习技法笔记:09 Decision Tree
Roadmap Decision Tree Hypothesis Decision Tree Algorithm Decision Tree Heuristics in C&RT Decisi ...
随机推荐
- 七、spark核心数据集RDD
简介 spark RDD操作具体参考官网:http://spark.apache.org/docs/latest/rdd-programming-guide.html#overview RDD全称叫做 ...
- HDU 1875(最小生成树)
因为是全连接图,所以也可以用最小生成树 这道题给边加了一个限制条件,(10<=x<=1000),所以可能不能全连通,需要判断 #include <cstdio> #includ ...
- CodeForces 616A(水题)
while(t--) 最后结果t=-1 #include <iostream> #include <string> #include <cstring> #incl ...
- Sprng IOC&AOP&事务梳理 (文章整理new)
IOC <理解 IOC> <IOC 的理解与解释> 正向控制:传统通过new的方式.反向控制,通过容器注入对象. 作用:用于模块解耦. DI:Dependency Inject ...
- Servlet:从入门到实战学习(2)---Servlet生命周期
一个Servlet的完整的生命周期(从创建到毁灭)包括:init()方法,service()方法,doGet()方法,doPost()方法,destroy()方法 init()方法用于 Servlet ...
- Android设备网络压力测试
网络测试的几个维度: 网络的性能 带宽:通过TCP测试来量度 时延:用ping命令量度 数据报丢失:用Iperf UDP测试来量度 Jitter(延时变化):用Iperf UDP测试来量度 信号强度( ...
- Apache的主要目录和配置文件详解
一.Apache 主要配置文件注释Apache的主配置文件:/etc/httpd/conf/httpd.conf默认站点主目录:/var/www/html/Apache服务器的配置信息全部存储在主配置 ...
- 最近选购MP3而有感便携追求音质的一些心得
之前的创新小石头MP3的耳机接口松动了.考虑到它已经服役了4年了.所以我准备重新买一个.而小石头出色的外放,我决定让给宝宝当玩具. 选购心得MP3的时候,原来的主导思想,是在低价位的里面考虑一台国际品 ...
- Django路由系统---django重点之url传递一个默认参数
django重点之url传递一个默认参数 可以利用这个特性,让2个URL映射一个函数,但是返回2个不同的HTML url(r'default_param1', views.def_param,), u ...
- 一、并行编程 - 数据并行 System.Threading.Tasks.Parallel 类
一.并行概念 1.并行编程 在.NET 4中的并行编程是依赖Task Parallel Library(后面简称为TPL) 实现的.在TPL中,最基本的执行单元是task(中文可以理解为"任 ...