题面

传送门

前置芝士

请确定您会曼哈顿距离和切比雪夫距离之间的转换,以及\(KDtree\)对切比雪夫距离的操作

题解

我们发现\(AB\)和\(C\)没有任何关系,所以关于\(C\)可以直接暴力数点

关于暴力数点,这个曼哈顿距离很麻烦,先把它转成切比雪夫距离,然后就是一个\(KDtree\)的经典操作了

容易发现交换操作的执行次数上界是\(tot\)(其中\(tot\)是交点个数),下界是\(n-cnt\)(其中\(cnt\)是原数组和飞过去之后的数组形成的一个置换,其中的轮换个数)

证明的话……上界应该是很好证明的,以样例那张图为例,红色的是一号的路线,不难发现它的路线肯定是一个类似于上凸壳的东西,也就是说它飞到右边之后绝对只会在最上面。然后把这一条东西删除,二号飞机的路线肯定是剩下来的上凸壳,也会在最上面……最后肯定保持相对顺序不变

下界的话,不同的置换之间是互不影响的,而设置换大小为\(k\),那么这里所需的最小交换次数为\(k-1\),所以总的次数为\(\sum (k-1)=n-cnt\)

关于为啥这里最小交换次数为\(k-1\)……因为它每一个交点都代表了一个逆序对,而交点里涵盖了所有的逆序对,所以交换逆序对的次数下界应该是\(k-1\)

//minamoto
#include<bits/stdc++.h>
#define R register
#define inf 0x3f3f3f3f
#define ll long long
#define inline __inline__ __attribute__((always_inline))
#define fp(i,a,b) for(R int i=(a),I=(b)+1;i<I;++i)
#define fd(i,a,b) for(R int i=(a),I=(b)-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
template<class T>inline bool cmin(T&a,const T&b){return a>b?a=b,1:0;}
template<class T>inline bool cmax(T&a,const T&b){return a<b?a=b,1:0;}
using namespace std;
char buf[1<<21],*p1=buf,*p2=buf;
inline char getc(){return p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++;}
int read(){
R int res,f=1;R char ch;
while((ch=getc())>'9'||ch<'0')(ch=='-')&&(f=-1);
for(res=ch-'0';(ch=getc())>='0'&&ch<='9';res=res*10+ch-'0');
return res*f;
}
const int N=5e5+5;const double eps=1e-8;
inline double max(R double x,R double y){return x>y?x:y;}
inline double fabs(R double x){return x<-eps?-x:x;}
struct Point{
double p[2];
inline Point(){}
inline Point(R double xx,R double yy){p[0]=xx,p[1]=yy;}
}poi[N];
struct node;typedef node* ptr;
struct node{
ptr lc,rc;double mn[2],mx[2];Point p;bool flag,ok;
inline node();
inline void init(R Point pp){
p=pp;
mn[0]=mx[0]=pp.p[0],mn[1]=mx[1]=pp.p[1];
}
inline double mndis(R int x,R int y){
return max(max(fabs(x-mn[0]),fabs(x-mx[0])),max(fabs(y-mn[1]),fabs(y-mx[1])));
}
inline double dis(R int x,R int y){return max(fabs(x-p.p[0]),fabs(y-p.p[1]));}
}e[N],*rt;
inline node::node(){lc=rc=e,mn[0]=mn[1]=inf,mx[0]=mx[1]=-inf;}
void upd(ptr p,ptr s){
cmin(p->mn[0],s->mn[0]),cmin(p->mn[1],s->mn[1]);
cmax(p->mx[0],s->mx[0]),cmax(p->mx[1],s->mx[1]);
}
int WD,tot;
inline bool operator <(const Point &a,const Point &b){return a.p[WD]<b.p[WD];}
void build(ptr &p,int l,int r,int wd){
int mid=(l+r)>>1;p=(e+mid),WD=wd;
nth_element(poi+l,poi+mid,poi+r+1);
p->init(poi[mid]);
if(l<mid)build(p->lc,l,mid-1,wd^1),upd(p,p->lc);
if(mid<r)build(p->rc,mid+1,r,wd^1),upd(p,p->rc);
}
void update(ptr p,int x,int y,int d){
if(p==e||p->flag||x+d<p->mn[0]||x-d>p->mx[0]||y+d<p->mn[1]||y-d>p->mx[1])return;
if(p->mndis(x,y)-eps<=d)return p->flag=1,void();
if(!p->ok&&p->dis(x,y)-eps<=d)p->ok=1;
update(p->lc,x,y,d),update(p->rc,x,y,d);
}
int push(ptr p){
if(p->flag){
p->ok=1;
if(p->lc!=e)p->lc->flag=1,p->lc->ok=1;
if(p->rc!=e)p->rc->flag=1,p->rc->ok=1;
}
int res=p->ok;
if(p->lc!=e)res+=push(p->lc);
if(p->rc!=e)res+=push(p->rc);
return res;
}
int n,m,A,B,C,s,t,y[N],yy[N],id[N];double k[N],b[N],iv;
ll ans1,ans2,ans;bool vis[N];
set<pair<int,int> > si;
set<pair<int,int> >::iterator it;
inline bool cmp(const int &x,const int &y){return yy[x]<yy[y];}
int main(){
// freopen("testdata.in","r",stdin);
n=read(),A=read(),B=read(),C=read(),s=read(),t=read(),iv=1.0/(t-s);
fp(i,1,n)y[i]=read();fp(i,1,n)yy[i]=read();
fp(i,1,n)k[i]=(yy[i]-y[i])*iv,b[i]=y[i]-k[i]*s;
fd(i,n,1){
for(it=si.begin();it!=si.end()&&it->first<yy[i];++it){
R int j=it->second;
double tx=(b[j]-b[i])/(k[i]-k[j]);
double ty=k[i]*tx+b[i];
double x=tx+ty,y=tx-ty;
poi[++tot]=Point(x,y);
}
si.insert(make_pair(yy[i],i));
}
build(rt,1,tot,0);
m=read();
for(R int x,y,dx,dy,d;m;--m){
dx=read(),dy=read(),d=read(),
x=dx+dy,y=dx-dy;
update(rt,x,y,d);
}
ans=push(rt)*C,ans1=ans+tot*A;
fp(i,1,n)id[i]=i;
sort(id+1,id+1+n,cmp);
int res=0;
fp(i,1,n)if(!vis[i]){
++res;
for(R int j=i;!vis[j];j=id[j])vis[j]=1;
}
ans2=ans+(n-res)*A+(tot-n+res)*B;
if(ans1>ans2)swap(ans1,ans2);
printf("%lld %lld\n",ans1,ans2);
return 0;
}

LOJ#3085. 「GXOI / GZOI2019」特技飞行(KDtree+坐标系变换)的更多相关文章

  1. Loj #3085. 「GXOI / GZOI2019」特技飞行

    Loj #3085. 「GXOI / GZOI2019」特技飞行 题目描述 公元 \(9012\) 年,Z 市的航空基地计划举行一场特技飞行表演.表演的场地可以看作一个二维平面直角坐标系,其中横坐标代 ...

  2. 【LOJ】#3085. 「GXOI / GZOI2019」特技飞行

    LOJ#3085. 「GXOI / GZOI2019」特技飞行 这显然是两道题,求\(C\)是一个曼哈顿转切比雪夫后的线段树扫描线 求\(AB\),对向交换最大化和擦身而过最大化一定分别为最大值和最小 ...

  3. LOJ#3083.「GXOI / GZOI2019」与或和_单调栈_拆位

    #3083. 「GXOI / GZOI2019」与或和 题目大意 给定一个\(N\times N\)的矩阵,求所有子矩阵的\(AND(\&)\)之和.\(OR(|)\)之和. 数据范围 \(1 ...

  4. LOJ#3088. 「GXOI / GZOI2019」旧词(树剖+线段树)

    题面 传送门 题解 先考虑\(k=1\)的情况,我们可以离线处理,从小到大对于每一个\(i\),令\(1\)到\(i\)的路径上每个节点权值增加\(1\),然后对于所有\(x=i\)的询问查一下\(y ...

  5. LOJ#3087. 「GXOI / GZOI2019」旅行者(最短路)

    题面 传送门 题解 以所有的感兴趣的城市为起点,我们正着和反着各跑一边多源最短路.记\(c_{0/1,i}\)分别表示正图/反图中离\(i\)最近的起点,那么对于每条边\((u,v,w)\),如果\( ...

  6. LOJ#3086. 「GXOI / GZOI2019」逼死强迫症(矩阵快速幂)

    题面 传送门 题解 先考虑全都放\(1\times 2\)的方块的方案,设防\(i\)列的方案数为\(g_i\),容易推出\(g_i=g_{i-1}+g_{i-2}\),边界条件为\(g_0=g_1= ...

  7. LOJ#3084. 「GXOI / GZOI2019」宝牌一大堆(递推)

    题面 传送门 题解 为什么又是麻将啊啊啊!而且还是我最讨厌的爆搜类\(dp\)-- 首先国士无双和七对子是可以直接搞掉的,关键是剩下的,可以看成\(1\)个雀头加\(4\)个杠子或面子 直接\(dp\ ...

  8. LOJ#3083. 「GXOI / GZOI2019」与或和(单调栈)

    题面 传送门 题解 按位考虑贡献,如果\(mp[i][j]\)这一位为\(1\)就设为\(1\)否则设为\(0\),对\(or\)的贡献就是全为\(1\)的子矩阵个数,对\(and\)的贡献就是总矩阵 ...

  9. 「GXOI / GZOI2019」简要题解

    「GXOI / GZOI2019」简要题解 LOJ#3083. 「GXOI / GZOI2019」与或和 https://loj.ac/problem/3083 题意:求一个矩阵的所有子矩阵的与和 和 ...

随机推荐

  1. 背景半透明rgba最佳实践

    by 一丝 <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <tit ...

  2. Python基础语法习题二

    习题: 1.请用代码实现:利用下划线将列表的每一个元素拼接成字符串,li=['alex', 'eric', 'rain'] 2.查找列表中元素,移除每个元素的空格,并查找以a或A开头并且以c结尾的所有 ...

  3. dubbo 提供者 ip不对

    1.服务器多网卡绑定,导致服务起来后程序自己选择的ip不对. 2.提供服务的机器开启了vpn. 3.dubbo配置文件中写死了host. 以下为转载:转自http://www.ithao123.cn/ ...

  4. open中的mode

    [open中的mode] 当使用O_CREAT标志的open来创建文件时,我们必须使用三个参数格式的open调用.第三个参数mode 是几个标志按位OR后得到的.他们是: S_IRUSR: 读权限,文 ...

  5. 多线程中,ResultSet为空,报错空指针

    最近在数据库查询数据时,由于数据量太大,使用了多线程,通过线程池建了好几个线程,然后调用了一个封装好的jdbc查询语句. 结果在多线程中,ResultSet报错空指针. 仔细查阅后,才发现多个线程访问 ...

  6. 15.3Sum (Two-Pointers)

    Given an array S of n integers, are there elements a, b, c in S such that a + b + c = 0? Find all un ...

  7. mysql常用的信息查询函数

    mysql常用信息函数 select version(); --当前数据库服务器版本信息 select database(); --当前使用的数据库 select current_user() 或 s ...

  8. 获取地址栏的URL: PHP JS

    1. PHP 获取上一页的URL 在php中可以通过内置的变量的属性来获取上一页的URL: $_SERVER['HTTP_REFERER']. 但是在IE中如果跳转是通过js函数如: window.l ...

  9. [Training Video - 6] [File Reading] [Groovy] Reading Properties file

    Reading Properties file : Properties prop = new Properties() def path = "D:\\SoapUIStudy\\appli ...

  10. Spring boot——logback.xml 配置详解(四)<filter>

    阅读目录 1 filter的使用 2 常用的过滤器 文章转载自:http://aub.iteye.com/blog/1101260,在此对作者的辛苦表示感谢! 回到顶部 1 filter的使用 < ...