不管你会不会写Unity3D的shader,估计你会知道,Unity3D编写shader有三种方式,这篇东西主要就是说一下这三种东西有什么区别,和大概是怎样用的。
先来列一下这三种方式:
fixed function shader
vertex and fragment shader
surface shader
为什么Unity3D要提供三种shader的编写方式呢?那是因为三种方式的编写的难易度有区别,对应着不同的使用人群。其实我觉得这是Uniy3D想得有点多了,着色器不单止是为了实现效果,还要效果实现的效率高,才适合真正使用在项目中,单纯实现一个效果,那只是demo级别的,只适合unity3D自身的产品推广,对实际使用者的意义不会很大。基于这种想法,我下面只会大概的介绍三种方式的使用方法,以后会通过其他文章有针对性的对某种方式进行详细的说明。
 
先来看看三种方式的说明:
fixed function shader (固定功能着色器)
最简单的着色器类型,只能使用Unity3D自带的固定语法和提供的方法,适用于任何硬件,使用难度最小
 vertex and fragment shader (顶点片段程序着色器)
顶点片段着色器,效果最为丰富的着色器类型,使用Cg/HLSL语言规范,着色器由顶点程序和片段程序组成。所有效果都需要自己编写,使用难度相对较大。
surface shader (表面着色器)
同样使用Cg/HLSL语言规范的着色器类型,不过把光照模型提取出来,可以使用Unity3D自带的一些光照模型,也可以自己编写光照模型,着色器同样由顶点程序和片段程序组成,不过本身有默认的程序方法,使用者可以只针对自己关系的效果部分进行编写。由于选择性比较大,所以可以编写出较为丰富的效果,使用难度相对vertex and fragment shader小。
 
由上面的三种方式的说明可以看出来了,如果你是由丰富的的Cg开发经验的,好的选择就是直接使用vertex and fragment shader了。fixed function shader虽然简单,但能实现的效果非常有限。而surface shader是Unity3D提供的一种较为折中的方式,同样能实现较丰富的效果,但难度相对小很多。不过surface shader有一个问题,它不支持SubShader内部的多pass,所以某些需要多pass的效果要实现起来会比较困难。
 
接下来是主要内容,每一种方式的编写规范和举例:
 
1、Fixed Function shaders
1.标准范例:
 Shader "VertexLit" {
Properties {
_Color ("Main Color", Color) = (,,,0.5)
_SpecColor ("Spec Color", Color) = (,,,)
_Emission ("Emmisive Color", Color) = (,,,)
_Shininess ("Shininess", Range (0.01, )) = 0.7
_MainTex ("Base (RGB)", 2D) = "white" { }
} SubShader {
Pass {
Material {
Diffuse [_Color]
Ambient [_Color]
Shininess [_Shininess]
Specular [_SpecColor]
Emission [_Emission]
}
Lighting On
SeparateSpecular On
SetTexture [_MainTex] {
constantColor [_Color]
Combine texture * primary DOUBLE, texture * constant
}
}
}
}
2.具体说明
具体变量、Material模块参考《Unity3D的着色器介绍(二)——Unity3D的Shader基本结构说明》,主要区别是使用SetTexture 模块来控制贴图
SetTexture的具体写法:
          SetTexture [贴图名称] {
ConstantColor color
            Combine ColorPart, AlphaPart
            }
 
ConstantColor color
定义一个常量颜色在combine command里面使用。
 
combine command
combine src1 * src2
将src1和src2相乘,结果会比两者更暗。
combine src1 + src2
将src1和src2相加,结果会比两者更亮
combine src1 - src2
从src1里减去src2
combine src1 +- src2
把src1加到src2,然后减去0.5
combine src1 lerp (src2) src3
 src3和src1之间的插值,使用src2的透明值。插值是相对的。
当透明值是1时显示src1,当透明值是0时显示src3
combine src1 * src2 + src3
将src1和src2的透明度相乘,然后加上src3
combine src1 * src2 +- src3
将src1和src2的透明度相乘,然后与src3相加减去0.5
Multiplies src1 with the alpha component of src2, then does a signed add with src3. 
combine src1 * src2 - src3
将src1和src2的透明度相乘,然后减去src3
 
matrix command
matrix [MatrixPropertyName]
Transforms texture coordinates used in this command with the given matrix
 
其中Combine部分是可选的,作用是设定颜色部分和透明部分的叠加方式。
其中透明部分如果不写,将会默认使用颜色部分相同的设置。
一般的写法是Combine texture * primary,这样的意思是把贴图乘以顶点颜色作为最终颜色。
也可以写成Combine texture * primary DOUBLE,加一个DOUBLE的作用是让光照强度增幅成2倍。primary代表的是初始的顶点颜色,也就是在没有加贴图之前的顶点颜色。
如果需要叠加第二张或者更多贴图,那么就不能再乘以primary了,要改为previous,也就是Combine texture * previous。previous代表的是之前的颜色,也就是你前一张贴图乘以初始颜色之后的颜色。
 
从Fixed Function shaders的写法可以看出,这种类型的shader非常简单易用,基本上所有平台设备都能支持,不过能做的东西确实不多。你可以用来简单的表现一些基本的贴图和颜色叠加的效果,也可以使用TexGen的贴图来实现一些贴图特效,不过不能控制顶点,也不能较为复杂的控制表面着色。
 
 
2、Vertex and Fragment Shader
1.标准例子:
 Shader "Custom/Exam1" {
Properties {
_MainTex ("Texture", 2D) = "white" { }
}
SubShader
{
pass
{
CGPROGRAM
#pragma vertex vert
#pragma fragment frag
#include "UnityCG.cginc"
sampler2D _MainTex;
float4 _MainTex_ST;
struct v2f {
float4 pos : SV_POSITION;
float2 uv : TEXCOORD0;
} ;
v2f vert (appdata_base v)
{
v2f o;
o.pos = mul(UNITY_MATRIX_MVP,v.vertex);
o.uv = TRANSFORM_TEX(v.texcoord,_MainTex);
return o;
}
float4 frag (v2f i) : COLOR
{
float4 texCol = tex2D(_MainTex,i.uv);
float4 outp = texCol;
return outp;
}
ENDCG
}
}
}
2.细节解释:
 
1、Cg小片段
Cg小片段以CGPROGRAM开头,以ENDCG结尾。中间的内容使用Cg/HLSL语言。
Cg小片段的开始处,可以添加:
#pragma vertex name - 表明这是个以name为名字的函数的顶点程序。 
 
#pragma fragment name- 表明这是个以name为名字的函数的片段程序。 
 
#pragma fragmentoption option - 添加选项到编译的OpenGL 片段程序。 通过 ARB 片段程序 可以查询到所允许的规范的选项列表。 这个指令对顶点程序或者不是以OpenGL为编译目标的程序无效。
 
#pragma target name - 着色器目标编译。
 
#pragma target default 编译默认目标:
在Direct3D 9环境中:顶点着色器1.1和像索着色器2.0
ARB顶点程序 有128位指令限制,ARB片段程序 有96位指令限制(32位纹理 + 64位算术运算),16个临时寄存器和4个间接纹理。
 
#pragma target 3.0 编译着色器模式3.0:
在Direct3D 9环境中:顶点着色器3.0和像索着色器 3.0
ARB顶点程序 没有指令限制,ARB片段程序 有1024位指令限制(512位纹理 + 512位算术运算),32个临时寄存器和4个间接纹理。可以通过使用 #pragma profileoption 命令扩展限制值。例如: #pragma profileoption MaxTexIndirections=256增加间接纹理上限到256个。需要注意的是某些着色器模式3.0中的特性不支持ARB顶点程序和ARB片段程序,比如派生指令这样的。你可以使用 #pragma glsl命令转换到GLSL中,这样子限制较少。
 
#pragma only_renderers space separated names - 仅用给定的渲染器编译着色器。默认情况下用所有的渲染器都编译着色器。
?d3d9 - Direct3D 9.
?opengl - OpenGL.
?gles - OpenGL ES 2.0.
?xbox360 - Xbox 360.
?ps3 - PlayStation 3.
?flash - Flash.
 
#pragma exclude_renderers space separated names - 不用给定的渲染器编译着色器。 默认情况下用所有的渲染器都编译着色器。参考上一点。
 
#pragma glsl - 用桌面OpenGL平台编译着色器时,转换成GLSL里面的Cg/HLSL(而不是默认设置的ARB顶点/片段程序)。
 
2、参数对应声明
如有以下着色器输入参数
_MyColor ("Some Color", Color) = (1,1,1,1) 
_MyVector ("Some Vector", Vector) = (0,0,0,0) 
_MyFloat ("My float", Float) = 0.5 
_MyTexture ("Texture", 2D) = "white" {} 
_MyCubemap ("Cubemap", CUBE) = "" {} 
那么在cg程序里面应该再次声明这些参数,才能在cg程序里面使用
float4 _MyColor;
float4 _MyVector;
float _MyFloat; 
sampler2D _MyTexture;
samplerCUBE _MyCubemap;
 
类型对应关系:
Color和Vector属性对应 float4 类型。 
Range和Float属性对应 float 类型。
Texture属性对应 普通2D纹理的sampler2D 类型。 
CUBE和RECT纹理对应 samplerCUBE 和 samplerRECT类型。 
 
3、顶点程序
需要获取顶点的信息,可以先引用#include "UnityCG.cginc"
然后在这个包里面有2种类型包含了顶点的信息:
appdata_base: 包含顶点位置,法线 和一个纹理坐标。
appdata_tan:包含顶点位置,切线,法线 和一个纹理坐标。
其中包含以下的参数:
float4 vertex 是顶点位置
float3 normal 是顶点法线
float4 texcoord 是第一UV坐标
float4 texcoord1 是第二UV坐标
float4 tangent 是切线向量(用在法线贴图中)
float4 color 是每个顶点(per-vertex)颜色
 
当然也可以不引用#include "UnityCG.cginc",直接自己定义appdata
struct appdata {
    float4 vertex : POSITION;
    float4 texcoord : TEXCOORD0;
};
其中常用类型:
POSITION:顶点位置
COLOR:顶点颜色
NORMAL:法线
TANGENT:切线
TEXCOORD0:UV1
TEXCOORD1:UV2
 
 
声明顶点程序名称
#pragma vertex vert
下面就可以写顶点程序vert了
struct v2f {
    float4 pos : SV_POSITION;
    fixed4 color : COLOR;
};
 
v2f vert (appdata_base v)
{
    v2f o;
    o.pos = mul (UNITY_MATRIX_MVP, v.vertex);
    o.color.xyz = v.normal * 0.5 + 0.5;
    return o;
}
 
其中v2f是一个自定义块,里面定义了顶点程序返回时包含的信息,也可以传递给片段程序用,其中位置改成SV_POSITION。也可以自定义一些其他的属性。
 
在顶点程序里面的顶点与矩阵相乘得到最终位置,相关矩阵解释:
UNITY_MATRIX_MVP 
当前模型*视*投影矩阵。(注:模型矩阵为 本地->世界)
UNITY_MATRIX_MV 
当前模型*视图矩阵 
UNITY_MATRIX_V 
当前视图矩阵
UNITY_MATRIX_P 
当前投影矩阵
UNITY_MATRIX_VP 
当前视图*投影矩阵
UNITY_MATRIX_T_MV 
转置模型*视图矩阵
UNITY_MATRIX_IT_MV 
-逆转置模型*视矩阵 
UNITY_MATRIX_TEXTURE0 to UNITY_MATRIX_TEXTURE3 
纹理变换矩阵 
 
 
 
当每一帧渲染的时候,每一个需要渲染的物体会自动的把顶点信息输入到shader的指定顶点程序,在vert顶点程序里面处理完,把顶点需要的信息赋值之后,就可以把v2f返回,这时候gpu会自动接收到顶点信息,并作处理。这个是GPU编程的特点。
 
 
3、片段程序
#pragma fragment frag
然后写
half4 frag (v2f i) : COLOR
{
    half4 texcol = tex2D (_MainTex, i.uv);
    return texcol * _Color;
}
片段程序不需要自定义块作为返回值,因为片段程序的返回值就直接是颜色了。
不过在片段程序里面,可以通过对之前顶点程序做处理获得的顶点位置、uv、法线等信息进行各种处理,让最终该点的颜色发生各种各样的改变。
 
3、Surface Shaders
1.标准例子:
Shader "Example/Diffuse Texture" {
Properties {
_MainTex ("Texture", 2D) = "white" {}
}
SubShader {
Tags { "RenderType" = "Opaque" }
CGPROGRAM
#pragma surface surf Lambert
struct Input {
float2 uv_MainTex;
};
sampler2D _MainTex;
void surf (Input IN, inout SurfaceOutput o) {
o.Albedo = tex2D (_MainTex, IN.uv_MainTex).rgb;
}
ENDCG
}
Fallback "Diffuse"
}
2.详细说明
程序声明写法:
#pragma surface surfaceFunction lightModel [optionalparams]
 
surfaceFunction就是程序名称,该程序应该写成:
void surf (Input IN,inout SurfaceOutput o),
Input是你自己定义的结构。Input结构中应该包含所有纹理坐标(texture coordinates)和和表面函数(surfaceFunction)所需要的额外的必需变量。
 
lightModel 光照模型:
可选:
Lambert
BlinnPhong
或者自定义
 
Optional parameters:
可选参数:
alpha -透明( Alpha)混合模式。使用它可以写出半透明的着色器。
alphatest:VariableName -透明( Alpha)测试模式。使用它可以写出 镂空效果的着色器。镂空大小的变量(VariableName)是一个float型的变量。
finalcolor:ColorFunction - 自定义的最终颜色函数(final color function)。 请参考范例:表面着色器例子(Surface Shader Examples)。
exclude_path:prepass 或者 exclude_path:forward - 使用指定的渲染路径,不需要生成通道。
addshadow - 添加阴影投射 & 收集通道(collector passes)。通常用自定义顶点修改,使阴影也能投射在任何程序的顶点动画上。 
dualforward - 在正向(forward)渲染路径中使用 双重光照贴图(dual lightmaps)。
fullforwardshadows - 在正向(forward)渲染路径中支持所有阴影类型。
decal:add - 添加贴花着色器(decal shader) (例如: terrain AddPass)。
decal:blend - 混合半透明的贴花着色器(Semitransparent decal shader)。
softvegetation - 使表面着色器(surface shader)仅能在Soft Vegetation打开时渲染。 
noambient - 不适用于任何环境光照(ambient lighting)或者球面调和光照(spherical harmonics lights)。 
novertexlights - 在正向渲染(Forward rendering)中不适用于球面调和光照(spherical harmonics lights)或者每个顶点光照(per-vertex lights)。 
nolightmap - 在这个着色器上禁用光照贴图(lightmap)。(适合写一些小着色器) 
nodirlightmap - 在这个着色器上禁用方向光照贴图(directional lightmaps)。 (适合写一些小着色器)。
noforwardadd - 禁用正向渲染添加通道(Forward rendering additive pass)。 这会使这个着色器支持一个完整的方向光和所有光照的per-vertex/SH计算。(也是适合写一些小着色器). 
approxview - 着色器需要计算标准视图的每个顶点(per-vertex)方向而不是每个像索(per-pixel)方向。 这样更快,但是视图方向不完全是当前摄像机(camera) 所接近的表面。
halfasview - 在光照函数(lighting function)中传递进来的是half-direction向量,而不是视图方向(view-direction)向量。 Half-direction会计算且会把每个顶点(per vertex)标准化。这样做会很快,但不完全准确。
 
注意:surface由于使用了光照模型,所以是不能写pass,直接写在subshader里面的。
 
输入端:
uv_贴图变量名称 - 贴图的uv
float3 viewDir - 视图方向( view direction)值。为了计算视差效果(Parallax effects),边缘光照(rim lighting)等,需要包含视图方向( view direction)值。
float4 with COLOR semantic -每个顶点(per-vertex)颜色的插值。
float4 screenPos - 屏幕空间中的位置。 为了反射效果,需要包含屏幕空间中的位置信息。比如在Dark Unity中所使用的 WetStreet着色器。
float3 worldPos - 世界空间中的位置。
float3 worldRefl - 世界空间中的反射向量。如果表面着色器(surface shader)不写入法线(o.Normal)参数,将包含这个参数。 请参考这个例子:Reflect-Diffuse 着色器。 
float3 worldNormal - 世界空间中的法线向量(normal vector)。如果表面着色器(surface shader)不写入法线(o.Normal)参数,将包含这个参数。
float3 worldRefl; INTERNAL_DATA - 世界空间中的反射向量。如果表面着色器(surface shader)不写入法线(o.Normal)参数,将包含这个参数。为了获得基于每个顶点法线贴图( per-pixel normal map)的反射向量(reflection vector)需要使用世界反射向量(WorldReflectionVector (IN, o.Normal))。请参考这个例子: Reflect-Bumped着色器。
float3 worldNormal; INTERNAL_DATA -世界空间中的法线向量(normal vector)。如果表面着色器(surface shader)不写入法线(o.Normal)参数,将包含这个参数。为了获得基于每个顶点法线贴图( per-pixel normal map)的法线向量(normal vector)需要使用世界法线向量(WorldNormalVector (IN, o.Normal))。 
 
 
输出端:
struct SurfaceOutput {
    half3 Albedo;
    half3 Normal;
    half3 Emission;
    half Specular;
    half Gloss;
    half Alpha;
};
 
最后说两句我觉得比较重要的话:
1、着色器都有它规定的指令限制、寄存器、和纹理的限制,有一些复杂的效果需要使用到较多的寄存器和指令,可能会超出限制,比如使用着色器来实现骨骼动画就很容易超出限制了。不论在什么平台编写着色器(unity3D或者stage3D之类)都需要先了解清楚有什么限制,不然等到编译的时候就哭了。
2、着色器的限制有时候是跟发布平台的硬件支持有关系的,某些发布的平台(比如手机端)不支持你指定的高级别着色器模式,它有可能会根据实际情况降低级别,或者甚至显示不出来。所以编写着色器效果之前要考虑一下需要发布的平台,不要老是问一些诸如“为什么我在Unity3D的编辑器看的效果是正常的,为什么发布到手机就看不到效果”之类的问题了。
 
 原文地址:http://blog.csdn.net/a6627651/article/details/50545643

编写Unity3D着色器的三种方式的更多相关文章

  1. DirectX11--HLSL编译着色器的三种方法

    前言 本教程不考虑Effects11(FX11),而是基于原始的HLSL. 目前编译与加载着色器的方法如下: 使用Visual Studio中的HLSL编译器,随项目编译期间一同编译,并生成.cso( ...

  2. 于Unity3D动态创建对象和创建Prefab三种方式的原型对象

    于Unity3D动态创建对象和创建Prefab三种方式的原型对象 u3d在动态创建的对象,需要使用prefab 和创建时 MonoBehaviour.Instantiate( GameObject o ...

  3. java:struts框架2(方法的动态和静态调用,获取Servlet API三种方式(推荐IOC(控制反转)),拦截器,静态代理和动态代理(Spring AOP))

    1.方法的静态和动态调用: struts.xml: <?xml version="1.0" encoding="UTF-8"?> <!DOCT ...

  4. Spring bean管理器 bean实例化的三种方式

    bean实例化的三种方式实现 第一种:使用类的无参数构造方法创建(常用 重要) 第一种实例化方式最常用,实例化类时会通过调用无参构造方法创建.示例代码如下: package spring.com.Us ...

  5. Unity3d 着色器语法(Shader)

    Shader "name" { [Properties] Subshaders [Fallback] } 定义了一个着色器.着色器拥有一个 Properties 的列表.着色器包含 ...

  6. Linux就这个范儿 第15章 七种武器 linux 同步IO: sync、fsync与fdatasync Linux中的内存大页面huge page/large page David Cutler Linux读写内存数据的三种方式

    Linux就这个范儿 第15章 七种武器  linux 同步IO: sync.fsync与fdatasync   Linux中的内存大页面huge page/large page  David Cut ...

  7. Java通过JDBC连接数据库的三种方式!!!并对数据库实现增删改查

    前言 java连接数据库完整流程为: 1,获得驱动(driver),数据库连接(url),用户名(username),密码(password)基本信息的三种方式. 2,通过获得的信息完成JDBC实现连 ...

  8. 盛大游戏技术总监徐峥:Unity引擎使用的三种方式

    在5月13日Unite 2017 案例分享专场上,盛大游戏技术总监徐峥分享了使用Unity引擎的三种方式,以下为详细内容: 大家好,我先简单介绍一下我自己,我是盛大游戏的技术总监徐峥.我今天想分享的主 ...

  9. 【Java EE 学习 52】【Spring学习第四天】【Spring与JDBC】【JdbcTemplate创建的三种方式】【Spring事务管理】【事务中使用dbutils则回滚失败!!!??】

    一.JDBC编程特点 静态代码+动态变量=JDBC编程. 静态代码:比如所有的数据库连接池 都实现了DataSource接口,都实现了Connection接口. 动态变量:用户名.密码.连接的数据库. ...

随机推荐

  1. Amoeba软件实现mysql读写分离

    一般不用,大公司都是自己程序实现的. 安装amoeba

  2. CocoaPods did not set the base configuration of your project 问题解决方式

    今天在使用pod install的时候.出现了 [!] CocoaPods did not set the base configuration of your project because you ...

  3. 【转】Java检测字符串是否有乱码

    package cn.cnnic.ops.learn; import java.util.regex.Matcher;import java.util.regex.Pattern; public cl ...

  4. 纯CSS3实现漂亮的价格表样式代码

    分享一款纯CSS3实现漂亮的价格表样式代码是一款常见的主机商发布产品价格信息页.效果图如下: 在线预览   源码下载 实现的代码. html代码: <div id="main" ...

  5. 一款基于jquery和css3的响应式二级导航菜单

    今天给大家分享一款基于jquery和css3的响应式二级导航菜单,这款导航是传统的基于顶部,鼠标经过的时候显示二级导航,还采用了当前流行的响应式设计.效果图如下: 在线预览   源码下载 实现的代码. ...

  6. 抽取、转换和装载介绍(七)管理ETL环境(待续)

    数据仓库的目标之一是能够为增强业务功能提供适时的.一致的和可靠的数据. 为了达到上述目标,ETL必须按照下述三条标准不断地加以完善: 可靠性 可用性 易管理性 子系统22--作业调度器 子系统23-- ...

  7. Android——监听事件OnLongClickListener

    .xml <Button android:layout_width="wrap_content" android:layout_height="wrap_conte ...

  8. hive & hive beeline常用参数

    Hive 1参数如下: usage: hive -d,--define <key=value> Variable substitution to apply to Hive command ...

  9. UVA 11019 Matrix Matcher 矩阵匹配器 AC自动机 二维文本串查找二维模式串

    链接:https://vjudge.net/problem/UVA-11019lrjP218 matrix matcher #include<bits/stdc++.h> using na ...

  10. VS2010在C#头文件中添加文件注释的方法(转)

    步骤: 1.VS2010 中找到(安装盘符以D盘为例)D:\Program Files (x86)\Microsoft Visual Studio 10.0\Common7\IDE\ItemTempl ...