《Linux内核分析》 第二节 操作系统是如何工作的
Linux内核分析 第二周 操作系统是如何工作的
张嘉琪 原创作品转载请注明出处 《Linux内核分析》MOOC课程http://mooc.study.163.com/course/USTC-1000029000
一、函数调用堆栈
- 计算机工作的三个法宝
- 存储程序计算机
- 中断机制
- 堆栈
二、借助Linux内核部分源代码模拟存储程序计算机工作模型及时钟中断
- mykernel实验指导(操作系统是如何工作的)
运行并分析一个精简的操作系统内核,理解操作系统是如何工作的
使用实验楼的虚拟机打开shell
cd LinuxKernel/linux-3.9.4
qemu -kernel arch/x86/boot/bzImage
然后cd mykernel ,可以看到qemu窗口输出的内容的代码mymain.c和myinterrupt.c
- 实验源代码
进程的启动和进程的切换机制分析见注释
mypcb.h
1 /*
2 * linux/mykernel/mypcb.h
3 *
4 * Kernel internal PCB types
5 *
6 * Copyright (C) 2013 Mengning
7 *
8 */
9
10 #define MAX_TASK_NUM 4
11 #define KERNEL_STACK_SIZE 1024*8
12
13 /* CPU-specific state of this task */
14 struct Thread {
15 unsigned long ip;
16 unsigned long sp;
17 };
18
19 typedef struct PCB{
20 int pid; //定义进程的ID
21 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */ //定义进程的状态
22 char stack[KERNEL_STACK_SIZE]; //建立搭建进程的堆栈
23 /* CPU-specific state of this task */
24 struct Thread thread;
25 unsigned long task_entry; //task_entry指定入口
26 struct PCB *next; //将进程用链表链接起来
27 }tPCB;
28
29 void my_schedule(void);//调度器
mymain.c
1 /*
2 * linux/mykernel/mymain.c
3 *
4 * Kernel internal my_start_kernel
5 *
6 * Copyright (C) 2013 Mengning
7 *
8 */
9 #include <linux/types.h>
10 #include <linux/string.h>
11 #include <linux/ctype.h>
12 #include <linux/tty.h>
13 #include <linux/vmalloc.h>
14
15
16 #include "mypcb.h"
17
18 tPCB task[MAX_TASK_NUM]; //声明一个PCB的数组
19 tPCB * my_current_task = NULL;
20 volatile int my_need_sched = 0; 是否需要调度
21
22 void my_process(void);
23
24
25 void __init my_start_kernel(void)
26 {
27 int pid = 0;
28 int i;
29 /* Initialize process 0*/ //初始化0号进程的数据结构
30 task[pid].pid = pid; // 进程id
31 task[pid].state = 0;/* -1 unrunnable, 0 runnable, >0 stopped */ //进程状态
32 task[pid].task_entry = task[pid].thread.ip = (unsigned long)my_process; //进程入口
33 task[pid].thread.sp = (unsigned long)&task[pid].stack[KERNEL_STACK_SIZE-1];//堆栈的栈顶
34 task[pid].next = &task[pid]; //next指向自己
35 /*fork more process */ //将新fork的进程放到进程列表的尾部
36 for(i=1;i<MAX_TASK_NUM;i++)
37 {
38 memcpy(&task[i],&task[0],sizeof(tPCB));
39 task[i].pid = i;
40 task[i].state = -1;
41 task[i].thread.sp = (unsigned long)&task[i].stack[KERNEL_STACK_SIZE-1];
42 task[i].next = task[i-1].next;
43 task[i-1].next = &task[i];
44 }
45 /* start process 0 by task[0] */ //启动0号进程
46 pid = 0;
47 my_current_task = &task[pid];
48 asm volatile(
49 "movl %1,%%esp\n\t" /* set task[pid].thread.sp to esp */ //%1 ->thread.sp
50 "pushl %1\n\t" /* push ebp */
51 "pushl %0\n\t" /* push task[pid].thread.ip */
52 "ret\n\t" /* pop task[pid].thread.ip to eip */
53 "popl %%ebp\n\t"
54 :
55 : "c" (task[pid].thread.ip),"d" (task[pid].thread.sp) /* input c or d mean %ecx/%edx*/
56 );
57 }
58 void my_process(void)
59 {
60 int i = 0;
61 while(1)
62 {
63 i++;
64 if(i%10000000 == 0)
65 {
66 printk(KERN_NOTICE "this is process %d -\n",my_current_task->pid);
67 if(my_need_sched == 1)
68 {
69 my_need_sched = 0;
70 my_schedule();
71 }
72 printk(KERN_NOTICE "this is process %d +\n",my_current_task->pid);
73 }
74 }
75 } /*0号进程的堆栈和0号进程的入口构建完成,my_start_kernel工作完成。循环1000万次才有一次机会判断一下是否需要调度*/
myinterrupt.c
1 /*
2 * linux/mykernel/myinterrupt.c
3 *
4 * Kernel internal my_timer_handler
5 *
6 * Copyright (C) 2013 Mengning
7 *
8 */
9 #include <linux/types.h>
10 #include <linux/string.h>
11 #include <linux/ctype.h>
12 #include <linux/tty.h>
13 #include <linux/vmalloc.h>
14
15 #include "mypcb.h"
16
17 extern tPCB task[MAX_TASK_NUM];
18 extern tPCB * my_current_task;
19 extern volatile int my_need_sched;
20 volatile int time_count = 0;
21
22 /*
23 * Called by timer interrupt.
24 * it runs in the name of current running process,
25 * so it use kernel stack of current running process
26 */
27 void my_timer_handler(void)
28 {
29 #if 1
30 if(time_count%1000 == 0 && my_need_sched != 1) //设置时间片大小,时间片用完是设置下一个调度标志
31 {
32 printk(KERN_NOTICE ">>>my_timer_handler here<<<\n");
33 my_need_sched = 1;
34 }
35 time_count ++ ;
36 #endif
37 return;
38 }
39
40 void my_schedule(void)
41 {
42 tPCB * next;
43 tPCB * prev;
44
45 if(my_current_task == NULL
46 || my_current_task->next == NULL)
47 {
48 return;
49 }
50 printk(KERN_NOTICE ">>>my_schedule<<<\n"); //将当前进程的下一个进城赋给next
51 /* schedule */
52 next = my_current_task->next;
53 prev = my_current_task;
54 if(next->state == 0)/* -1 unrunnable, 0 runnable, >0 stopped */ //下一个进程的状态是0(正在执行)时用switch to next process进行上下文切换
55 {
56 /* switch to next process */
/*进程切换的关键代码*/
/*将当前ebp保存,esp赋到0,把下一个进程的sp放入esp*/
57 asm volatile(
58 "pushl %%ebp\n\t" /* save ebp */
59 "movl %%esp,%0\n\t" /* save esp */
60 "movl %2,%%esp\n\t" /* restore esp */
61 "movl $1f,%1\n\t" /* save eip */ //1f是指接下的标号1:的位置
62 "pushl %3\n\t"
63 "ret\n\t" /* restore eip */
64 "1:\t" /* next process start here */
65 "popl %%ebp\n\t"
66 : "=m" (prev->thread.sp),"=m" (prev->thread.ip)
67 : "m" (next->thread.sp),"m" (next->thread.ip)
68 );
69 my_current_task = next;
70 printk(KERN_NOTICE ">>>switch %d to %d<<<\n",prev->pid,next->pid);
71 }
72 else
73 {
74 next->state = 0;
75 my_current_task = next;
76 printk(KERN_NOTICE ">>>switch %d to %d<<<\n",prev->pid,next->pid);
77 /* switch to new process */
78 asm volatile(
79 "pushl %%ebp\n\t" /* save ebp */ 保存当前进程ebp
80 "movl %%esp,%0\n\t" /* save esp */ 保存eso
81 "movl %2,%%esp\n\t" /* restore esp */ 下一进程的esp放入esp中
82 "movl %2,%%ebp\n\t" /* restore ebp */
83 "movl $1f,%1\n\t" /* save eip */ 保存eip
84 "pushl %3\n\t" 将下一个进程的eip保存在堆栈中
85 "ret\n\t" /* restore eip */
86 : "=m" (prev->thread.sp),"=m" (prev->thread.ip)
87 : "m" (next->thread.sp),"m" (next->thread.ip)
88 );
89 }
90 return;
91 }
三、学习总结
- 进程的启动和进程的切换机制
进程是接到调度指令才能启动的,进程切换就是从正在运行的进程中收回处理器,然后再使待运行进程来占用处理器。这里所说的从某个进程收回处理器,实质上就是把进程存放在处理器的寄存器中的中间数据找个地方存起来,从而把处理器的寄存器腾出来让其他进程使用。在切换时,一个进程存储在处理器各寄存器中的中间数据叫做进程的上下文,所以进程的切换实质上就是被中止运行进程与待运行进程上下文的切换。在进程未占用处理器时,进程 的上下文是存储在进程的私有堆栈中的。
- 操作系统是如何工作的
操作系统也有“两把剑”,分别是中断上下文和进程上下文的切换。操作系统身负诸如管理与配置内存、决定系统资源供需的优先次序、控制输入与输出设备、操作网络与管理文件系统等基本事务。操作系统通过对进程的控制完成每项事物,进程通过控制数据的压入、弹出堆栈,设置时间片等方式进行进程上下文的切换和中断,从而让操作系统可以正常工作
《Linux内核分析》 第二节 操作系统是如何工作的的更多相关文章
- Linux内核分析第二周--操作系统是如何工作的
Linux内核分析第二周--操作系统是如何工作的 李雪琦 + 原创作品转载请注明出处 + <Linux内核分析>MOOC课程http://mooc.study.163.com/course ...
- 20135327郭皓——Linux内核分析第二周 操作系统是如何工作的
操作系统是如何工作的 上章重点回顾: 计算机是如何工作的?(总结)——三个法宝 存储程序计算机工作模型,计算机系统最最基础性的逻辑结构: 函数调用堆栈,高级语言得以运行的基础,只有机器语言和汇编语言的 ...
- linux内核分析 第二周 操作系统是如何工作的
银雪纯 原创作品转载请注明出处 <Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-1000029000 一.计算机是如何工作的 ...
- linux内核分析作业:操作系统是如何工作的进行:完成一个简单的时间片轮转多道程序内核代码
计算机如何工作 三个法宝:存储程序计算机.函数调用堆栈.中断机制. 堆栈 函数调用框架 传递参数 保存返回地址 提供局部变量空间 堆栈相关的寄存器 Esp 堆栈指针 (stack pointer) ...
- Linux内核分析 笔记二 操作系统是如何工作的 ——by王玥
一.知识要点 1.计算机是如何工作的?(总结)——三个法宝 存储程序计算机工作模型,计算机系统最最基础性的逻辑结构: 函数调用堆栈,高级语言得以运行的基础,只有机器语言和汇编语言的时候堆栈机制对于计算 ...
- Linux内核分析作业二—操作系统是如何工作的
一.实验:简单的时间片轮转多道程序内核代码运行与分析 my_start_kernel之前都是硬件初始化,它是操作系统的执行入口,每循环100000次就进行一次打印. 执行更加简单,每次时钟中断时都会调 ...
- LINUX内核分析第二周学习总结——操作系统是如何工作的
LINUX内核分析第二周学习总结——操作系统是如何工作的 张忻(原创作品转载请注明出处) <Linux内核分析>MOOC课程http://mooc.study.163.com/course ...
- Linux内核设计第二周——操作系统工作原理
Linux内核设计第二周 ——操作系统工作原理 作者:宋宸宁(20135315) 一.实验过程 图1 执行效果 从图中可以看出,每执行my_ start_ kernel函数两次或一次,my_ time ...
- Linux内核分析第二周学习博客——完成一个简单的时间片轮转多道程序内核代码
Linux内核分析第二周学习博客 本周,通过实现一个简单的操作系统内核,我大致了解了操作系统运行的过程. 实验主要步骤如下: 代码分析: void my_process(void) { int i = ...
随机推荐
- phpstorm 的.idea 目录加入.gitignore无效的解决方法
无效的原因是:对应的目录或者文件已经被git跟踪,此时再加入.gitignore后就无效了, 解决办法: 先执行 git rm -r --cached .idea 再重新加入.gitignore文件 ...
- [python] os.path模块常用方法汇总
os.path.abspath(path) #返回绝对路径 os.path.basename(path) #返回文件名 os.path.commonprefix(list) #返回list(多个路径) ...
- 死磕nginx系列--使用nginx做负载均衡
使用nginx做负载均衡的两大模块: upstream 定义负载节点池. location 模块 进行URL匹配. proxy模块 发送请求给upstream定义的节点池. upstream模块解读 ...
- PHP生成excel表格文件并下载
本文引自网络,仅供自己学习之用. 利用php导出excel我们大多会直接生成.xls文件,这种方便快捷. function createtable($list,$filename){ header(& ...
- css 文本溢出
多行文本溢出处理: display: -webkit-box; -webkit-box-orient: vertical; -webkit-line-clamp: 3; // 3 行 overflow ...
- SpringMVC之ajax+select下拉框交互常用方式
<!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...
- 【转】C#中对IDisposable接口的理解
IDisposable接口定义:定义一种释放分配的资源的方法. .NET 平台在内存管理方面提供了GC(Garbage Collection),负责自动释放托管资源和内存回收的工作,但它无法对非托管资 ...
- JAVA框架 Spring AOP--切入点表达式和通知类型
一:AOP的相关术语: 1)Joinpoint(连接点):所谓的连接点是指那些可以被拦截点,在spring中这些点是指方法.因为在spring中支持方法类型的连接点. 2)Pointcut(切入点): ...
- 【转】VISUAL STUDIO 2008代码指标为您节省资金
转自:https://www.geekzone.co.nz/vs2008/4773 Visual Studio 2008 Team Developer和Team Suite版本中提供的许多新功能之一是 ...
- day80
昨日回顾 上节回顾: 中间件: -django请求生命周期: -中间件:对全局请求的修改,和全局响应的修改 -process_request:从上往下执行 -process_response:从下往上 ...