Domino Effect
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 9335   Accepted: 2325

Description

Did you know that you can use domino bones for other things besides playing Dominoes?

Take a number of dominoes and build a row by standing them on end with only a small distance in between. If you
do it right, you can tip the first domino and cause all others to fall down in succession (this is where the phrase ``domino effect'' comes from).




While this is somewhat pointless with only a few dominoes, some people went to the opposite extreme in the early Eighties. Using millions of dominoes of different colors and materials to fill whole halls with elaborate patterns of falling dominoes, they created
(short-lived) pieces of art. In these constructions, usually not only one but several rows of dominoes were falling at the same time. As you can imagine, timing is an essential factor here.




It is now your task to write a program that, given such a system of rows formed by dominoes, computes when and where the last domino falls. The system consists of several ``key dominoes'' connected by rows of simple dominoes. When a key domino falls, all rows
connected to the domino will also start falling (except for the ones that have already fallen). When the falling rows reach other key dominoes that have not fallen yet, these other key dominoes will fall as well and set off the rows connected to them. Domino
rows may start collapsing at either end. It is even possible that a row is collapsing on both ends, in which case the last domino falling in that row is somewhere between its key dominoes. You can assume that rows fall at a uniform rate.

Input

The input file contains descriptions of several domino systems. The first line of each description contains two integers: the number n of key dominoes (1 <= n < 500) and the number m of rows between
them. The key dominoes are numbered from 1 to n. There is at most one row between any pair of key dominoes and the domino graph is connected, i.e. there is at least one way to get from a domino to any other domino by following a series of domino rows.




The following m lines each contain three integers a, b, and l, stating that there is a row between key dominoes a and b that takes l seconds to fall down from end to end.




Each system is started by tipping over key domino number 1.



The file ends with an empty system (with n = m = 0), which should not be processed.

Output

For each case output a line stating the number of the case ('System #1', 'System #2', etc.). Then output a line containing the time when the last domino falls, exact to one digit to the right of the
decimal point, and the location of the last domino falling, which is either at a key domino or between two key dominoes(in this case, output the two numbers in ascending order). Adhere to the format shown in the output sample. The test data will ensure there
is only one solution. Output a blank line after each system.

Sample Input

2 1
1 2 27
3 3
1 2 5
1 3 5
2 3 5
0 0

Sample Output

System #1
The last domino falls after 27.0 seconds, at key domino 2. System #2
The last domino falls after 7.5 seconds, between key dominoes 2 and 3.

Source

Southwestern European Regional Contest 1996



题目链接:http://poj.org/problem?id=1135



题目大意:有n张关键的多米诺骨牌,m条路。从一条路的起点到终点的牌所有倒下须要时间t。计算最后一张倒下的牌在哪。是什么时候



题目分析:两种情况:

1.最后倒下的牌就是某张关键牌,则时间为最短路中的最大值ma1

2.最后倒下的牌在某两张牌之间,则时间为到两张牌的时间加上两张牌之间牌倒下的时间除2的最大值ma2

最后比較m1和m2。若m1大则为第一种情况,否则是另外一种情况



一组例子:

4 4

1 2 5

2 4 6

1 3 5

3 4 7

0 0



答案:

The last domino falls after 11.5 seconds, between key dominoes 3 and 4.

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
int const INF = 0x3fffffff;
int const MAX = 505;
int map[MAX][MAX];
int dis[MAX];
bool used[MAX];
int n, m, ca = 1; void Dijkstra(int v0)
{
memset(used, false, sizeof(used));
for(int i = 1; i <= n; i++)
dis[i] = map[v0][i];
used[v0] = true;
dis[v0] = 0;
for(int i = 0; i < n - 1; i++)
{
int u = 1, mi = INF;
for(int j = 1; j <= n; j++)
{
if(!used[j] && dis[j] < mi)
{
mi = dis[j];
u = j;
}
}
used[u] = true;
for(int k = 1; k <= n; k++)
if(!used[k] && map[u][k] < INF)
dis[k] = min(dis[k], dis[u] + map[u][k]);
}
double ma1 = -1, ma2 = -1;
int pos, pos1, pos2;
for(int i = 1; i <= n; i++)
{
if(dis[i] > ma1)
{
ma1 = dis[i];
pos = i;
}
}
for(int i = 1; i <= n; i++)
{
for(int j = 1; j <= n; j++)
{
if(map[i][j] < INF && (dis[i] + dis[j] + map[i][j]) / 2.0 > ma2)
{
ma2 = (dis[i] + dis[j] + map[i][j]) / 2.0;
pos1 = i;
pos2 = j;
}
}
}
if(ma1 < ma2)
printf("The last domino falls after %.1f seconds, between key dominoes %d and %d.\n\n", ma2, pos1, pos2);
else
printf("The last domino falls after %.1f seconds, at key domino %d.\n\n", ma1, pos); } int main()
{
while(scanf("%d %d", &n, &m) != EOF && (n + m))
{
for(int i = 1; i <= n; i++)
{
dis[i] = INF;
for(int j = 1; j <= n; j++)
map[i][j] = INF;
}
for(int i = 0; i < m; i++)
{
int u, v, w;
scanf("%d %d %d", &u, &v, &w);
map[u][v] = w;
map[v][u] = w;
}
printf("System #%d\n", ca ++);
Dijkstra(1);
}
}

POJ 1135 Domino Effect (Dijkstra 最短路)的更多相关文章

  1. POJ 1135 -- Domino Effect(单源最短路径)

     POJ 1135 -- Domino Effect(单源最短路径) 题目描述: 你知道多米诺骨牌除了用来玩多米诺骨牌游戏外,还有其他用途吗?多米诺骨牌游戏:取一 些多米诺骨牌,竖着排成连续的一行,两 ...

  2. POJ 1135 Domino Effect(Dijkstra)

    点我看题目 题意 : 一个新的多米诺骨牌游戏,就是这个多米诺骨中有许多关键牌,他们之间由一行普通的骨牌相连接,当一张关键牌倒下的时候,连接这个关键牌的每一行都会倒下,当倒下的行到达没有倒下的关键牌时, ...

  3. POJ 1135.Domino Effect Dijkastra算法

    Domino Effect Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 10325   Accepted: 2560 De ...

  4. POJ 1135 Domino Effect (spfa + 枚举)- from lanshui_Yang

    Description Did you know that you can use domino bones for other things besides playing Dominoes? Ta ...

  5. [POJ] 1135 Domino Effect

    Domino Effect Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 12147 Accepted: 3046 Descri ...

  6. poj 2253 Frogger (dijkstra最短路)

    题目链接:http://poj.org/problem?id=2253 Frogger Time Limit: 1000MS   Memory Limit: 65536K Total Submissi ...

  7. POJ 2253 Frogger(dijkstra 最短路

    POJ 2253 Frogger Freddy Frog is sitting on a stone in the middle of a lake. Suddenly he notices Fion ...

  8. [ACM_图论] Domino Effect (POJ1135 Dijkstra算法 SSSP 单源最短路算法 中等 模板)

    Description Did you know that you can use domino bones for other things besides playing Dominoes? Ta ...

  9. POJ. 2253 Frogger (Dijkstra )

    POJ. 2253 Frogger (Dijkstra ) 题意分析 首先给出n个点的坐标,其中第一个点的坐标为青蛙1的坐标,第二个点的坐标为青蛙2的坐标.给出的n个点,两两双向互通,求出由1到2可行 ...

随机推荐

  1. laravel队列,事件简单使用方法

    A.队列的使用 1.队列配置文件存储在 config/queue.php 根据自己的情况进行配置 2..env文件 QUEUE_DRIVER=database(根据个人情况配置,redis等) 3.创 ...

  2. socket编程之select相关

    FD_ZERO,FD_ISSET这些都是套节字结合操作宏 看看MSDN上的select函数, 这是在select   io   模型中的核心,用来管理套节字IO的,避免出现无辜锁定. int   se ...

  3. Maven 命令及其他备忘

    1.与eclipse中右键 Maven -> Update Project 对应的命令行命令: mvn clean install -e -U -e详细异常,-U强制更新

  4. JTree 添加 , 删除, 修改

    package com.swing.demo; import java.awt.BorderLayout; import java.awt.Container; import java.awt.eve ...

  5. .NET 4.0 和 .NET 4.0 Client Profile 区别

    Visual Studio 2010如期发布了,我怀着迫不及待的心情马上下载了最新的ISO来安装和感受一下. .NET Framework 自从 2002 年发展至今,已经历了好几个版本,1.0, 1 ...

  6. BeanUtils工具

    什么是BeanUtils工具 BeanUtils工具是一种方便我们对JavaBean进行操作的工具,是Apache组织下的产品. BeanUtils工具一般可以方便javaBean的哪些操作? 1)b ...

  7. BZOJ.1007.[HNOI2008]水平可见直线(凸壳 单调栈)

    题目链接 可以看出我们是要维护一个下凸壳. 先对斜率从小到大排序.斜率最大.最小的直线是一定会保留的,因为这是凸壳最边上的两段. 维护一个单调栈,栈中为当前可见直线(按照斜率排序). 当加入一条直线l ...

  8. hdu 5194 组合数学or暴力

    直接凑了个公式带入,没想到直接ac了,至于题解中的期望可加性可以参考概率论相关知识 #include<cstdio> #include<iostream> #include&l ...

  9. BZOJ 3400: [Usaco2009 Mar]Cow Frisbee Team 奶牛沙盘队 动态规划

    3400: [Usaco2009 Mar]Cow Frisbee Team 奶牛沙盘队 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=34 ...

  10. Codeforces Round #272 (Div. 2) E. Dreamoon and Strings 动态规划

    E. Dreamoon and Strings 题目连接: http://www.codeforces.com/contest/476/problem/E Description Dreamoon h ...