【模板】LCA
代码如下
#include <bits/stdc++.h>
using namespace std;
const int maxn=5e5+10;
inline int read(){
int x=0,f=1;char ch;
do{ch=getchar();if(ch=='-')f=-1;}while(!isdigit(ch));
do{x=x*10+ch-'0';ch=getchar();}while(isdigit(ch));
return f*x;
}
struct node{
int nxt,to;
}e[maxn<<1];
int tot=1,head[maxn];
inline void add_edge(int from,int to){
e[++tot]=node{head[from],to},head[from]=tot;
}
int n,q,root,dep[maxn],f[maxn][21];
void dfs(int u,int fa){
dep[u]=dep[fa]+1,f[u][0]=fa;
for(int i=1;i<=20;i++)f[u][i]=f[f[u][i-1]][i-1];
for(int i=head[u];i;i=e[i].nxt){
int v=e[i].to;if(v==fa)continue;
dfs(v,u);
}
}
int lca(int x,int y){
if(dep[x]<dep[y])swap(x,y);
for(int i=20;i>=0;i--)if(dep[f[x][i]]>=dep[y])x=f[x][i];
if(x==y)return x;
for(int i=20;i>=0;i--)if(f[x][i]^f[y][i])x=f[x][i],y=f[y][i];
return f[x][0];
}
void read_and_parse(){
n=read(),q=read(),root=read();
for(int i=1,x,y;i<n;i++){
x=read(),y=read();
add_edge(x,y),add_edge(y,x);
}
dfs(root,0);
}
void solve(){
int x,y;
while(q--){
x=read(),y=read();
printf("%d\n",lca(x,y));
}
}
int main(){
read_and_parse();
solve();
return 0;
}
【模板】LCA的更多相关文章
- 算法模板——LCA(最近公共祖先)
实现的功能如下——在一个N个点的无环图中,共有N-1条边,M个访问中每次询问两个点的距离 原理——既然N个点,N-1条边,则说明这是一棵树,而且联通.所以以1为根节点DFS建树,然后通过求两点的LCA ...
- [模板]LCA
洛谷P3379 注意:不能与LCA搞混(打久了就会发现两个还是有很大区别的) 位运算一定要加括号! for循环从0到logn还是从logn到0看当前的状态更适合哪种 第53行预处理一定要注意!(因为没 ...
- [模板]LCA的倍增求法解析
题目描述 如题,给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先. 输入输出格式 输入格式: 第一行包含三个正整数N.M.S,分别表示树的结点个数.询问的个数和树根结点的序号. 接下来N-1行每 ...
- 模板 树上求LCA 倍增和树链剖分
//233 模板 LCA void dfs(int x,int f){ for(int i=0;i<E[x].size();i++){ int v = E[x][i]; if(v==f)cont ...
- POJ 1330 Nearest Common Ancestors (最近公共祖先LCA + 详解博客)
LCA问题的tarjan解法模板 LCA问题 详细 1.二叉搜索树上找两个节点LCA public int query(Node t, Node u, Node v) { int left = u.v ...
- HDU 2586(LCA欧拉序和st表)
什么是欧拉序,可以去这个大佬的博客(https://www.cnblogs.com/stxy-ferryman/p/7741970.html)巨详细 因为欧拉序中的两点之间,就是两点遍历的过程,所以只 ...
- 浅谈倍增法求解LCA
Luogu P3379 最近公共祖先 原题展现 题目描述 如题,给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先. 输入格式 第一行包含三个正整数 \(N,M,S\),分别表示树的结点个数.询问 ...
- NOIP2015游记——一次开心又失望的旅行
啊,一年一度的NOIP终于是结束了 以前的大神都有写自己的感受 然而我居然给忘了!!!! 吓得我赶紧来写一份游记 Day.-INF--出发前一个星期 机智的我选择了停课 就是为了OIER这伟大而又光荣 ...
- 洛谷P3379 【模板】最近公共祖先(LCA)
P3379 [模板]最近公共祖先(LCA) 152通过 532提交 题目提供者HansBug 标签 难度普及+/提高 提交 讨论 题解 最新讨论 为什么还是超时.... 倍增怎么70!!题解好像有 ...
- LCA倍增算法的错误与模板
先上我原来的错误的代码 type node=^link; link=record num:int64; next:node; end; var fa:..,..] of int64; dep:..] ...
随机推荐
- 20155202张旭 Exp4 恶意代码分析
20155202张旭 Exp4 恶意代码分析 实验前问题回答: 一:如果在工作中怀疑一台主机上有恶意代码,但只是猜想,所有想监控下系统一天天的到底在干些什么.请设计下你想监控的操作有哪些,用什么方法来 ...
- libgdx学习记录11——平铺地图TiledMap
地图对于游戏场景十分重要,很多游戏都需要对地图进行编辑,可使用TileMap进行编辑并生成对应的tmx格式地图文件. 编辑好后,可通过TmxMapLoader来读取地图文件.可通过一个正交相机Otho ...
- Jmeter(十八)_Ubuntu部署jmeter与ant
Docker部署接口自动化持续集成环境第三步,容器化Jmeter与ant! 接上文:Docker_容器化jenkins 为了整合接口自动化的持续集成工具,我将jmeter与ant都部署在了Jenkin ...
- Oracle中Clob类型处理解析 (转)
转:原文:http://blog.csdn.net/pojianbing/article/details/2789426 最近利用NHibernate映射类型为Clob字段在插入数据时发现当 ...
- openssl证书及配置
我的环境是:Linux+Apache+MySQL+PHP 1.下载openssl 及相关依赖 #yum install -y openssl 2.进入目录 /etc/pki/tls/certs #cd ...
- kafka学习总结之kafka核心
1. Kafka核心组件 (1)replication(副本).partition(分区) 一个topic可以有多个副本,副本的数量决定了有多少个broker存放写入的数据:副本是以partitio ...
- Hugepage介绍以及实践
在Linux 64位系统里面,默认内存是以4K的页面(Page)来管理的,当系统有非常多的内存的时候,管理这些内存的消耗就比较大;而HugePage使用2M大小的页面来减小管理开销. Hugepage ...
- Visual Studio2013安装过程
Visual Studio是微软开发的一套基于组件的软件开发工具,我选择安装的是Visual Studio2013版本.首先, 第一步是要找到一个安装包: 我们可以直接百度MSDN,显示的第一条就是官 ...
- 2017-8-20 HTTP协议
http协议 http协议是一种超文本传输协议(一种约定) 三大特性:无状态,媒体独立,无连接: HTTP 工作原理 HTTP协议工作于客户端-服务端架构为上.浏览器作为HTTP客户端通过URL向HT ...
- Beta博客集合
Beta博客集合 Task1:beta冲刺准备 冲刺准备 Task2:Beta阶段冲刺合集 Beta阶段冲刺一 Beta阶段冲刺二 Beta阶段冲刺三 Beta阶段冲刺四 Beta阶段冲刺五 Task ...