【bzoj2440】 中山市选2011—完全平方数
http://www.lydsy.com/JudgeOnline/problem.php?id=2440 (题目链接)
题意
求第K个不含有完全平方因子的数
Solution
没想到莫比乌斯还可以用来容斥,好6啊。右转题解→_→:LCF
蜜汁被狙人:jump
细节
LL,还TLE了2发。。。
代码
// bzoj2440
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<vector>
#include<cmath>
#define LL long long
#define inf 2147483640
#define Pi acos(-1.0)
#define free(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout);
using namespace std; const int maxn=1000010;
int mu[maxn],vis[maxn],p[maxn],K; int sigema(int k) {
int ans=0;
for (int i=1;i*i<=k;i++) ans+=mu[i]*(k/(i*i));
return ans;
}
int main() {
mu[1]=1;
for (int i=2;i<maxn;i++) {
if (!vis[i]) p[++p[0]]=i,mu[i]=-1;
for (int j=1;j<=p[0] && p[j]*i<maxn;j++) {
vis[p[j]*i]=1;
if (i%p[j]==0) {mu[p[j]*i]=0;break;}
else mu[p[j]*i]=-mu[i];
}
}
int T;scanf("%d",&T);
while (T--) {
scanf("%d",&K);
int l=0,r=inf,ans;
while (l<=r) {
int mid=((LL)l+r)>>1;
if (sigema(mid)<K) l=mid+1;
else ans=mid,r=mid-1;
}
printf("%d\n",ans);
}
return 0;
}
【bzoj2440】 中山市选2011—完全平方数的更多相关文章
- BZOJ2440: [中山市选2011]完全平方数(莫比乌斯+容斥原理)
2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 4920 Solved: 2389[Submit][Sta ...
- BZOJ2440 中山市选2011完全平方数(容斥原理+莫比乌斯函数)
如果能够知道不大于n的合法数有多少个,显然就可以二分答案了. 考虑怎么求这个.容易想到容斥,即枚举完全平方数.我们知道莫比乌斯函数就是此种容斥系数.筛出来就可以了. 注意二分时会爆int. #incl ...
- BZOJ2440 [中山市选2011]完全平方数
本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000作者博客:http://www.cnblogs.com/ljh2000-jump/转 ...
- 2019.02.09 bzoj2440: [中山市选2011]完全平方数(二分答案+容斥原理)
传送门 题意简述:qqq次询问(q≤500)(q\le500)(q≤500),每次问第kkk个不被除111以外的完全平方数整除的数是多少(k≤1e9)(k\le1e9)(k≤1e9). 思路:考虑二分 ...
- BZOJ2440:[中山市选2011]完全平方数(莫比乌斯函数)
Description 小 X 自幼就很喜欢数.但奇怪的是,他十分讨厌完全平方数.他觉得这些数看起来很令人难受.由此,他也讨厌所有是完全平方数的正整数倍的数.然而这丝毫不影响他对其他数的热爱. 这天是 ...
- 题解【bzoj2440 [中山市选2011]完全平方数】
Description 求第 \(k\) 个不含平方因子的正整数.多组询问.\(k \leq 10^9, T \leq 50\) Solution 网上的题解几乎都是容斥,这里给一个简单的也挺快的做法 ...
- bzoj2440 [中山市选2011]完全平方数——莫比乌斯+容斥
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2440 莫比乌斯...被难倒... 看TJ:http://hzwer.com/4827.htm ...
- BZOJ2440: [中山市选2011]完全平方数 容斥原理_莫比乌斯函数
emmm....... 数学题都不友好QAQ...... Code: #include <cstdio> #include <algorithm> #include <c ...
- 【学术篇】bzoj2440 [中山市选2011]完全平方数
-题目の传送门- 题目大意: 找到第k个无平方因子数. 看到数据范围很大, 我们要采用比\(O(n)\)还要小的做法. 考虑如果前\(x\)个数中有\(k-1\)个无平方因子数, 而前\(x+1\)个 ...
- BZOJ 2440: [中山市选2011]完全平方数 [容斥原理 莫比乌斯函数]
2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 3028 Solved: 1460[Submit][Sta ...
随机推荐
- WPF编程,窗体最大化、最小化、关闭按钮功能的禁用
原文:WPF编程,窗体最大化.最小化.关闭按钮功能的禁用 版权声明:我不生产代码,我只是代码的搬运工. https://blog.csdn.net/qq_43307934/article/detail ...
- 小兔博客新增源码下载模块,JavaWeb项目实战,JavaScript入门教程 ,JavaSE案例等
从今以后,所有的源码在 http://www.xiaotublog.com/downloadView.html 都可以免费下载,在下载页面还可以直接链接到相关的教程地址(如果有教程的话...). 最近 ...
- 汇编 do while循环
do while生成的汇编代码 do while汇编还原成C++代码 一. do while成生的汇编代码 // int i=0; // do // { // i++; // } while ( ...
- Scala学习(二)练习
Scala控制结构和函数&练习 1. 一个数字如果为正数,则它的signum为1:如果是负数,则signum为-1:如果为0,则signum为0:编写一个函数来计算这个值 简单逻辑判断: 测试 ...
- ILSVRC2016目标检测任务回顾——视频目标检测(VID)
转自知乎<深度学习大讲堂> 雷锋网(公众号:雷锋网)按:本文作者王斌,中科院计算所前瞻研究实验室跨媒体计算组博士生,导师张勇东研究员.2016年在唐胜副研究员的带领下,作为计算所MCG-I ...
- [BZOJ4082][Wf2014]Surveillance[倍增]
题意 给你一个长度为 \(len\) 的环,以及 \(n\) 个区间,要你选择尽量少的区间,使得它们完全覆盖整个环.问最少要多少个区间. \(len,n\leq 10^6\) . 分析 考虑普通的区间 ...
- Paxos算法浅析
前言在文章2PC/3PC到底是啥中介绍了2PC这种一致性协议,从文中了解到2PC更多的被用在了状态一致性上(分布式事务),在数据一致性中很少被使用:而Paxos正是在数据一致性中被广泛使用,在过去十年 ...
- vue基础项目安装教程
安装node.js 从node.js官网下载并安装node,安装过程很简单,一路“下一步”就可以了. 安装完成之后,打开命令行工具,输入 node -v,如下图,如果出现相应的版本号,则说明安装成功. ...
- node基础-文件系统-文件写操作
文件操作频率最高的就是读跟写.nodejs的文件的读取API在<node基础-文件系统-读取文件>里已经简单介绍过,本文就简单介绍下nodejs的文件写API. nodejs的文件操作均提 ...
- jmeter的开启
先申明我以jmeter的3.2版本来描述本文内容,通常不要选择太新的版本,因为新版本容易出现不稳定和不兼容因素.启动jmeter的前提是JDK已经安装和配置,具体的JDK已经安装和配置自行查资料,此处 ...