【bzoj2440】 中山市选2011—完全平方数
http://www.lydsy.com/JudgeOnline/problem.php?id=2440 (题目链接)
题意
求第K个不含有完全平方因子的数
Solution
没想到莫比乌斯还可以用来容斥,好6啊。右转题解→_→:LCF
蜜汁被狙人:jump
细节
LL,还TLE了2发。。。
代码
// bzoj2440
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<vector>
#include<cmath>
#define LL long long
#define inf 2147483640
#define Pi acos(-1.0)
#define free(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout);
using namespace std; const int maxn=1000010;
int mu[maxn],vis[maxn],p[maxn],K; int sigema(int k) {
int ans=0;
for (int i=1;i*i<=k;i++) ans+=mu[i]*(k/(i*i));
return ans;
}
int main() {
mu[1]=1;
for (int i=2;i<maxn;i++) {
if (!vis[i]) p[++p[0]]=i,mu[i]=-1;
for (int j=1;j<=p[0] && p[j]*i<maxn;j++) {
vis[p[j]*i]=1;
if (i%p[j]==0) {mu[p[j]*i]=0;break;}
else mu[p[j]*i]=-mu[i];
}
}
int T;scanf("%d",&T);
while (T--) {
scanf("%d",&K);
int l=0,r=inf,ans;
while (l<=r) {
int mid=((LL)l+r)>>1;
if (sigema(mid)<K) l=mid+1;
else ans=mid,r=mid-1;
}
printf("%d\n",ans);
}
return 0;
}
【bzoj2440】 中山市选2011—完全平方数的更多相关文章
- BZOJ2440: [中山市选2011]完全平方数(莫比乌斯+容斥原理)
2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 4920 Solved: 2389[Submit][Sta ...
- BZOJ2440 中山市选2011完全平方数(容斥原理+莫比乌斯函数)
如果能够知道不大于n的合法数有多少个,显然就可以二分答案了. 考虑怎么求这个.容易想到容斥,即枚举完全平方数.我们知道莫比乌斯函数就是此种容斥系数.筛出来就可以了. 注意二分时会爆int. #incl ...
- BZOJ2440 [中山市选2011]完全平方数
本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000作者博客:http://www.cnblogs.com/ljh2000-jump/转 ...
- 2019.02.09 bzoj2440: [中山市选2011]完全平方数(二分答案+容斥原理)
传送门 题意简述:qqq次询问(q≤500)(q\le500)(q≤500),每次问第kkk个不被除111以外的完全平方数整除的数是多少(k≤1e9)(k\le1e9)(k≤1e9). 思路:考虑二分 ...
- BZOJ2440:[中山市选2011]完全平方数(莫比乌斯函数)
Description 小 X 自幼就很喜欢数.但奇怪的是,他十分讨厌完全平方数.他觉得这些数看起来很令人难受.由此,他也讨厌所有是完全平方数的正整数倍的数.然而这丝毫不影响他对其他数的热爱. 这天是 ...
- 题解【bzoj2440 [中山市选2011]完全平方数】
Description 求第 \(k\) 个不含平方因子的正整数.多组询问.\(k \leq 10^9, T \leq 50\) Solution 网上的题解几乎都是容斥,这里给一个简单的也挺快的做法 ...
- bzoj2440 [中山市选2011]完全平方数——莫比乌斯+容斥
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2440 莫比乌斯...被难倒... 看TJ:http://hzwer.com/4827.htm ...
- BZOJ2440: [中山市选2011]完全平方数 容斥原理_莫比乌斯函数
emmm....... 数学题都不友好QAQ...... Code: #include <cstdio> #include <algorithm> #include <c ...
- 【学术篇】bzoj2440 [中山市选2011]完全平方数
-题目の传送门- 题目大意: 找到第k个无平方因子数. 看到数据范围很大, 我们要采用比\(O(n)\)还要小的做法. 考虑如果前\(x\)个数中有\(k-1\)个无平方因子数, 而前\(x+1\)个 ...
- BZOJ 2440: [中山市选2011]完全平方数 [容斥原理 莫比乌斯函数]
2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 3028 Solved: 1460[Submit][Sta ...
随机推荐
- bundle install 安装的 gem 提示 cannot load such file
/usr/local/lib/ruby/site_ruby/2.1.0/rubygems/core_ext/kernel_require.rb:54:in `require': cannot load ...
- POJ 2965&&1753
最近由于复习备考(然而考得还是很炸),很久没打题目了.现在开始刷寒假作业,不得不搞POJ 话说没有中文真的好烦啊! 先看1753 题目大意是说在一个4*4的格子中有黑白两色的棋子,你可以翻动其中的棋子 ...
- EZ 2017 12 30 2018noip第二次膜你赛
去年的比赛了,然而今天才改好. 总体难度适中,有大佬AK. 主要是自己SB第二题没想出来,然后又是可怜的100来分. T1 一道二分+数学的题目. 我们可以二分叫的次数,然后用公式(等差数列,公差都是 ...
- 页面弹出全屏浮层或遮罩时,禁止底层body滚动
· 解决方法 针对弹出的浮层的 touchmove事件,添加阻止浏览器默认行为. $('.mask-wrapper').on('touchmove', function (event) { // 监听 ...
- OLEDB 命令转换组件的用法
在数据流任务组件中,OLEDB 命令转换组件对输入的每行数据调用TSQL,该组件能够把输入的数据作为参数,因此,该转换组件主要用于运行参数化的查询. 命令转换组件的配置十分简单,只有三个可编辑属性,位 ...
- asp.net web api参数
翻译自:http://www.c-sharpcorner.com/article/parameter-binding-in-asp-net-web-api/ 主要自己学习下,说是翻译,主要是把文章的意 ...
- 从头到尾谈一下HTTPS
引言 “你能谈一下HTTPS吗?” “一种比HTTP安全的协议.” “...” 如果面试这样说的话那差不多就gg了,其实HTTPS要展开回答的话内容还挺丰富的.本篇文章详细介绍了HTTPS是什么.为什 ...
- 给Android Studio 设置背景图片
初用Android Studio的我 看见这么帅的事情,肯定自己要设置试试(又可以边看女神边打代码了,想想都刺激)由于这不是AS的原始功能所以需要下载插件 先看看效果图吧: 1.下载插件 Sexy E ...
- Python读取ini配置文件封装方法
读取配置文件 ----rw_ini.py from configparser import ConfigParser def read_config(config_file_path:str): &q ...
- 李群与李代数在slam中的应用
昨天,刚接触道了李群和李代数,查了许多资料,也看了一些视屏.今天来谈谈自己的感受. 李群是有一个挪威数学家提出的,在十九二十世纪得到了很大的发展. 其归于非组合数学,现在简单介绍李群和李代数的概念.群 ...