(2018中科大自招最后一题)
设$a_1=1,a_{n+1}=\left(1+\dfrac{1}{n}\right)^3(n+a_n)$证明:
(1)$a_n=n^3\left(1+\sum\limits_{k=1}^{n-1}\dfrac{1}{k^2}\right);
(2)\prod\limits_{k=1}^n\left(1+\dfrac{k}{a_k}\right)<3$

证明:
1)数学归纳法,略.

$k=1$时候显然成立,$k\ge2$时有如下漂亮的连乘积放缩:

\begin{align*}
\prod\limits_{k=1}^n\left(1+\dfrac{k}{a_k}\right)&=\prod\limits_{k=1}^n\left(1+\dfrac{1}{k^2(1+\sum\limits_{m=1}^{k-1}\frac{1}{m^2})}\right)\\
&<\prod\limits_{k=1}^n(1+\dfrac{1}{k^2\left(2-\frac{1}{k}\right)})\\
&=\prod\limits_{k=1}^{n}{\dfrac{2k^2-k+1}{2k^2-k}}\\
&<2\prod_{k=2}^{n}{\dfrac{k(2k-1)}{(k-1)(2k+1)}}\\
&=\dfrac{6n}{2n+1}\\
&<3
\end{align*}

如果证明$<8$则变为一道难度降为高考题的题,可以解答如下:

由于
\begin{align*}
\sum\limits_{k=1}^n\dfrac{k}{a_k}& =\sum\limits_{k=1}^n\dfrac{k}{k^3\left(1+\sum\limits_{m=1}^{k-1}\frac{1}{m^2}\right)} \\
& <\sum\limits_{k=1}^n\dfrac{1}{k^2\left(2-\frac{1}{k}\right)}\\
&=\sum\limits_{k=1}^n\dfrac{1}{2k^2-k}\\
&<\sum\limits_{k=1}^n\dfrac{1}{2(k-\frac{3}{4})(k+\frac{1}{4})}\\
&=2-\dfrac{1}{2n+1/2}\\
&<2
\end{align*}

\begin{align*}
\prod\limits_{k=1}^n\left(1+\dfrac{k}{a_k}\right)& \le\left(\dfrac{\sum\limits_{k=1}^n{(1+\dfrac{k}{a_k}})}{n}\right)^n \\
& <\left(1+\dfrac{2}{n}\right)^n\\
&<e^2<8
\end{align*}

改为$<8$后本质上考察了下面这个重要的极限:

$\lim\limits_{n\longrightarrow +\infty}{(1+\dfrac{1}{n})^n}=e$

练习:证明存在:$n\in N,\prod\limits_{k=1}^n\left(\dfrac{k^2}{k^2+1}\right)<\dfrac{2}{7}$

MT【198】连乘积放缩的更多相关文章

  1. MT【26】ln(1+x)的对数平均放缩

    评:1.某种程度上$ln(1+x)\ge \frac{2x}{2+x}$是最佳放缩. 2.这里涉及到分母为幂函数型的放缩技巧,但是不够强,做不了这题.

  2. MT【167】反复放缩

    已知数列$\{a_n\}$满足:$a_1=1,a_{n+1}=a_n+\dfrac{a_n^2}{n(n+1)}$1)证明:对任意$n\in N^+,a_n<5$2)证明:不存在$M\le4$, ...

  3. MT【71】数列裂项放缩题

    已知${a_n}$满足$a_1=1,a_{n+1}=(1+\frac{1}{n^2+n})a_n.$证明:当$n\in N^+$时, $(1)a_{n+1}>a_n.(2)\frac{2n}{n ...

  4. MT【53】对数平均做数列放缩

    [从最简单的做起]--波利亚 请看下面三道循序渐进不断加细的题. 评:随着右边的不断加细,解决问题的方法也越来越"高端".当然最佳值$ln2$我们可以用相对 容易的方法来证明: $ ...

  5. MT【22】一道分母为混合型的放缩

    评:指数函数增长>幂函数增长>对数函数增长.

  6. MT【11】对数放缩题

    解答:C 评论:这里讲几个背景知识

  7. 多点触摸(MT)协议(翻译)

    参考: http://www.kernel.org/doc/Documentation/input/multi-touch-protocol.txt 转自:http://www.arm9home.ne ...

  8. leetcode 198

    198. House Robber You are a professional robber planning to rob houses along a street. Each house ha ...

  9. /MT、/MD编译选项,以及可能引起在不同堆中申请、释放内存的问题

    一.MD(d).MT(d)编译选项的区别 1.编译选项的位置 以VS2005为例,这样子打开: 1)         打开项目的Property Pages对话框 2)         点击左侧C/C ...

随机推荐

  1. Android导入AS工程

     AS  导入工程 还得 新建工程贴代码 

  2. spring boot项目配置RestTemplate超时时长

    配置类: @Configuration public class FeignConfiguration { @Bean(name="remoteRestTemplate") pub ...

  3. 20155217《网络对抗》Exp02 后门原理与实践

    20155217<网络对抗>Exp02 后门原理与实践 实验要求 使用netcat获取主机操作Shell,cron启动. 使用socat获取主机操作Shell,任务计划启动. 使用MSF ...

  4. 20155339 Exp4 恶意代码分析

    20155339 Exp4 恶意代码分析 实验后回答问题 (1)如果在工作中怀疑一台主机上有恶意代码,但只是猜想,所有想监控下系统一天天的到底在干些什么.请设计下你想监控的操作有哪些,用什么方法来监控 ...

  5. 5、JVM的监控与分析工具

    一.JPS(虚拟机进程监控工具) 二.jstat:虚拟机统计信息监视工具 例子:jstat -gcutil 16478 s0:区域占比2.33%: s1占比0.00%: E:伊甸园区 : O:老年区: ...

  6. arm学习——有关位操作的总结

    在学习arm的过程中,感觉寄存器,基本不会提供位操作,而是整体的操作, 整体操作的就是要注意在对某位赋值的时候不要影响到其他位,看上去不简单, 其实,整体操作有技巧, 那么就来总结一下: 1.首先要理 ...

  7. 【Java框架型项目从入门到装逼】第十三节 用户新增功能完结篇

    这一节,我们把用户新增的功能继续做一个完善.首先,新增成功后,需要给前台返回一个信息,就是告诉浏览器,这次用户新增的操作到底是成功了呢,还是失败了呢?为此,我们需要专门引入一个结果类,里面只有两个属性 ...

  8. C#语法糖yield

    代码中经常遇到迭代数据集合的情况,当希望获取到一个IEnumerable<T>类型的集合,而又不想把数据一次性加载到内存中时, 可以考虑使用yield,yield关键字可实现用户的按需获取 ...

  9. Yii2中的format

    关于format,这个也非常方便, 用来格式化内容的. 如下代码: <?= DetailView::widget([ 'model' => $model, 'attributes' =&g ...

  10. ScreenToGif 代码分析

    ScreenToGif项目由四个文件夹组成: Files 存放协议文件 GifRecorder 存放gif编码器代码 ScreenToGif 存放主代码 Other 存放Hooktest和Transl ...