Solution

发现 $x \ xor \  2x = 3x$ 仅当 $x$ 的二进制中没有相邻的 $1$

对于第一个问题就可以进行数位DP 了。

但是对于第二个问题, 我们只能通过递推 打表 来算出答案了。

推公式 打表 可知, 这是一个斐波那契数列, $a_0 = 1, a_1 = 2, a_2 = 3$....

通过矩阵快速幂优化递推就可以过啦

Code

 #include<cstdio>
#include<cstring>
#include<algorithm>
#define rd read()
#define ll long long
using namespace std; const int mod = 1e9 + ; const int N = ; int T, a[];
ll sum[N][], n; struct matrix {
ll s[][];
matrix operator * (const matrix &b) const {
matrix re;
memset(re.s, , sizeof(re.s));
for(int i = ; i <= ; ++i)
for(int k = ; k <= ; ++k)
for(int j = ; j <= ; ++j)
re.s[i][j] = (re.s[i][j] + s[i][k] * b.s[k][j]) % mod;
return re;
}
}ans, st; struct node {
int id;
ll in, out1, out2;
}b[]; ll read() {
ll X = , p = ; char c = getchar();
for(; c > '' || c < ''; c = getchar()) if(c == '-') p = -;
for(; c >= '' && c <= ''; c = getchar()) X = X * + c - '';
return X * p;
} ll dfs(int pos, int pre, int lim, int lead) {
if(!pos) return lead == ;
if(!lim && !lead && sum[pos][pre] != -)
return sum[pos][pre];
int up = lim ? a[pos] : ;
ll tmp = ;
for(int i = ; i <= up; ++i) {
if(pre && i)
continue;
tmp += dfs(pos - , i, lim && a[pos] == i, lead && i == );
}
if(!lim && !lead)
sum[pos][pre] = tmp;
return tmp;
} ll work(ll x) {
int len = ;
while(x) a[++len] = x % , x /= ;
return dfs(len , , true, true);
} inline bool cmp1(const node &A, const node &B ) {
return A.in < B.in;
} inline bool cmp2(const node &A, const node &B) {
return A.id < B.id;
} void print(ll x) {
sort(b + , b + + T, cmp1);
memset(sum, -, sizeof(sum));
memset(st.s, , sizeof(st.s));
memset(ans.s, , sizeof(ans.s));
st.s[][] = st.s[][] = st.s[][] = ;
ans.s[][] = ;
ans.s[][] = ;
printf("%lld\n", work(x));
for(; x; x >>= , st = st * st)
if(x & ) ans = ans * st;
printf("%lld\n", (ans.s[][] % mod + mod) % mod);
} int main()
{
T = rd;
for(; T; T--) print(rd);
}

BZOJ 3329 - Xorequ - 数位DP, 矩乘的更多相关文章

  1. BZOJ 3329: Xorequ [数位DP 矩阵乘法]

    3329: Xorequ 题意:\(\le n \le 10^18\)和\(\le 2^n\)中满足\(x\oplus 3x = 2x\)的解的个数,第二问模1e9+7 \(x\oplus 2x = ...

  2. BZOJ 3329 Xorequ (数位DP、矩阵乘法)

    手动博客搬家: 本文发表于20181105 23:18:54, 原地址https://blog.csdn.net/suncongbo/article/details/83758728 题目链接 htt ...

  3. BZOJ 3329: Xorequ(数位dp+递推)

    传送门 解题思路 可以把原式移项得\(x\)^\(2x\)=\(3x\),而\(x+2x=3x\),说明\(x\)二进制下不能有两个连续的\(1\).那么第一问就是一个简单的数位\(dp\),第二问考 ...

  4. BZOJ.3329.Xorequ(数位DP)

    题目链接 x^3x=2x -> x^2x=3x 因为a^b+((a&b)<<1)=a+b,x^2x=x+2x,所以x和2x的二进制表示中不存在相邻的1. (或者,因为x+2x ...

  5. BZOJ 3329 Xorequ 数字DP+矩阵乘法

    标题效果:特定n,乞讨[1,n]内[1,2^n]差多少x满足x^3x=2x x^3x=2x相当于x^2x = 3x 和3x=x+2x 和2x=x<<1 因此x满足条件IFFx&(x ...

  6. bzoj 3329: Xorequ【数位dp+矩阵乘法】

    注意第一问不取模!!! 因为a+b=a|b+a&b,a^b=a|b-a&b,所以a+b=a^b+2(a&b) x^3x==2x可根据异或的性质以转成x^2x==3x,根据上面的 ...

  7. BZOJ3329 Xorequ(数位DP)

    题目大意:x xor 2x=3x(与x xor 3x=2x等价)求满足等式且小于n的x的个数,与满足等式小于2n的数的个数. 因为异或是不进位的二进制加法,那么因为结果正好和加法相同,那么说明x在二进 ...

  8. [BZOJ 3329]Xorequ

    Description 题库链接 给出 \(n\) ,分别求 \(\leq n\) 和 \(\leq 2^n\) 的满足方程 \[x\oplus 3x=2x\] 的正整数解个数. \(1\leq n\ ...

  9. bzoj 3209 bzoj1799 数位dp

    3209: 花神的数论题 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2267  Solved: 1040[Submit][Status][Disc ...

随机推荐

  1. bind,call,applay的区别

    方法调用模式: 当一个函数被保存为对象的一个方法时,如果调用表达式包含一个提取属性的动作,那么它就是被当做一个方法来调用,此时的this被绑定到这个对象. var a = 1 var obj1 = { ...

  2. ./configure: error: the HTTP rewrite module requires the PCRE library解决

    ./configure: error: the HTTP rewrite module requires the PCRE library解决   有时候,我们需要单独安装nginx,来处理大量的下载 ...

  3. JDBC的基本概念

    英文名:Java DataBase Connectivity 中文名:数据库连接 作用: java操作数据库 本质上(sun公司的程序员)定义的一套操作关系型数据库的规则也就是接口,各数据库厂商实现接 ...

  4. Web前端js下载流文件

    前端下载文件大概有以下种: 1)a标签链接下载 <a href="url">点击链接下载</a> 2)表单form提交下载 var form = $(&qu ...

  5. MS17-010漏洞检测

    1.扫描脚本的下载和加载 由于Metasploit还没有更新MS17-010检测的模块,所以要去exploit-db下载,并在MSF中加载. cd /usr/share/metasploit-fram ...

  6. JMeter一次简单的接口测试(转载)

    转载自 http://www.cnblogs.com/yangxia-test 本次接口测试:根据ws查询所有商品的具体的信息.检查商品是否返回成功. 1.  准备测试数据 查询数据库中产品表已上架商 ...

  7. 以字符串形式获取excel单元格中的内容

    public static String getCellValue(XSSFCell cell) { if (cell == null) { return ""; } switch ...

  8. PHP采集利器:Snoopy 试用心得

    Snoopy.class.php下载 Snoopy是一个php类,用来模拟浏览器的功能,可以获取网页内容,发送表单.Snoopy正确运行需要你的服务器的PHP版本在4以上,并且支持PCRE(Perl ...

  9. c++中的类(class)-----笔记(类模板)

    1,一个模板类至少具有一个类参数,类参数是个符号以表示将要被某个确定数据类型代替的类型. #include<iostream> #include<string> using n ...

  10. kafka集群压力测试--基础。

    1.生产者测试 kafka-producer-perf-test.bat --num-records 1000000 --topic test --record-size 200 --throughp ...