传送门

整体二分好题。

题意简述:nnn种果汁,每种有三个属性:美味度,单位体积价格,购买体积上限。

现在有mmm个询问,每次问能否混合出总体积大于某个值,总价格小于某个值的果汁,如果能,求所有方案中用于混合的果汁的美味度的最小值的最大值。


思路:

首先考虑单次询问怎么做,看这个询问的类型应该可以二分答案。

接着思考如何checkcheckcheck,这个时候可以发现果汁可以按照美味度单调递减排列来让我们二分这个答案。

拍完序之后就可以采用贪心的方式,我们知道应该从单位体积从小到大买,因此我们建一棵权值线段树在上面二分寻找如果要满足购买那么多体积需要的最小花费,然后跟允许的花费比较进行下一次二分。

可以观察到对于所有的询问这样的操作形式都是一模一样的,因此我们整体二分即可。

一个判无解的小技巧:加入一种美味度为-1,单位体积价格为0,购买上限为inf*的饮料,这样无解的自然会二分到这个点上

代码:

#include<bits/stdc++.h>
#define lc (p<<1)
#define rc (p<<1|1)
#define mid (l+r>>1)
#define ri register int
using namespace std;
typedef long long ll;
inline ll read(){
	ll ans=0;
	char ch=getchar();
	while(!isdigit(ch))ch=getchar();
	while(isdigit(ch))ans=(ans<<3)+(ans<<1)+(ch^48),ch=getchar();
	return ans;
}
const int N=1e5+5,mx=100000;
int n,m,ans[N],cur=0;
ll s1[N<<2],s2[N<<2];
struct Upd{int d,p,l;}a[N];
struct Q{int id;ll g,l;}qry[N],t1[N],t2[N];
inline void pushup(int p){s1[p]=s1[lc]+s1[rc],s2[p]=s2[lc]+s2[rc];}
inline void update(int p,int l,int r,int k,int v){
	if(l==r){s1[p]+=v,s2[p]+=(ll)v*l;return;}
	if(k<=mid)update(lc,l,mid,k,v);
	else update(rc,mid+1,r,k,v);
	pushup(p);
}
inline ll query(int p,int l,int r,int v){
	if(!v)return 0;
	if(l==r)return (ll)v*l;
	if(s1[lc]>=v)return query(lc,l,mid,v);
	return s2[lc]+query(rc,mid+1,r,v-s1[lc]);
}
inline bool cmp(const Upd&a,const Upd&b){return a.d>b.d;}
inline void solve(int ql,int qr,int l,int r){
	if(ql>qr||l>r)return;
	if(l==r){for(ri i=ql;i<=qr;++i)ans[qry[i].id]=a[l].d;return;}
	int hd1=0,hd2=0;
	while(cur<mid)++cur,update(1,1,mx,a[cur].p,a[cur].l);
	while(cur>mid)update(1,1,mx,a[cur].p,-a[cur].l),--cur;
	for(ri i=ql;i<=qr;++i){
		if(qry[i].l>s1[1])t2[++hd2]=qry[i];
		else if(query(1,1,mx,qry[i].l)<=qry[i].g)t1[++hd1]=qry[i];
		else t2[++hd2]=qry[i];
	}
	for(ri i=1;i<=hd1;++i)qry[ql+i-1]=t1[i];
	for(ri i=1;i<=hd2;++i)qry[ql+hd1+i-1]=t2[i];
	solve(ql,ql+hd1-1,l,mid),solve(ql+hd1,qr,mid+1,r);
}
int main(){
	n=read(),m=read();
	for(ri i=1;i<=n;++i)a[i].d=read(),a[i].p=read(),a[i].l=read();
	a[++n]=(Upd){-1,0,0x3f3f3f3f};
	sort(a+1,a+n+1,cmp);
	for(ri i=1;i<=m;++i)qry[i].id=i,qry[i].g=read(),qry[i].l=read();
	solve(1,m,1,n);
	for(ri i=1;i<=m;++i)cout<<ans[i]<<'\n';
	return 0;
}

2019.01.14 bzoj5343: [Ctsc2018]混合果汁(整体二分+权值线段树)的更多相关文章

  1. P5163 WD与地图(整体二分+权值线段树)

    传送门 细节要人命.jpg 这题思路太新奇了--首先不难发现可以倒着做变成加边,但是它还需要我们资瓷加边的同时维护强连通分量.显然加边之后暴力跑是不行的 然后有一个想法,对于一条边\((u,v)\), ...

  2. [bzoj5343][Ctsc2018]混合果汁_二分答案_主席树

    混合果汁 bzoj-5343 Ctsc-2018 题目大意:给定$n$中果汁,第$i$种果汁的美味度为$d_i$,每升价格为$p_i$,每次最多添加$l_i$升.现在要求用这$n$中果汁调配出$m$杯 ...

  3. HDU6621 K-th Closest Distance 第 k 小绝对值(主席树(统计范围的数有多少个)+ 二分 || 权值线段树+二分)

    题意:给一个数组,每次给 l ,r, p, k,问区间 [l, r] 的数与 p 作差的绝对值的第 k 小,这个绝对值是多少 分析:首先我们先分析单次查询怎么做: 题目给出的数据与多次查询已经在提示着 ...

  4. 2019杭电多校第三场hdu6606 Distribution of books(二分答案+dp+权值线段树)

    Distribution of books 题目传送门 解题思路 求最大值的最小值,可以想到用二分答案. 对于二分出的每个mid,要找到是否存在前缀可以份为小于等于mid的k份.先求出这n个数的前缀和 ...

  5. 2019年CCPC网络赛 HDU 6703 array【权值线段树】

    题目大意:给出一个n个元素的数组A,A中所有元素都是不重复的[1,n].有两种操作:1.将pos位置的元素+1e72.查询不属于[1,r]中的最小的>=k的值.强制在线. 题解因为数组中的值唯一 ...

  6. The Stream of Corning 2( 权值线段树/(树状数组+二分) )

    题意: 有两种操作:1.在[l,r]上插入一条值为val的线段 2.问p位置上值第k小的线段的值(是否存在) 特别的,询问的时候l和p合起来是一个递增序列 1<=l,r<=1e9:1< ...

  7. BZOJ5343 [Ctsc2018]混合果汁 【二分 + 主席树】

    题目链接 BZOJ5343 题解 明显要二分一下美味度,然后用尽量少的价格去购买饮料,看看能否买到\(L\)升,然后看看能否控制价格在\(g\)内 尽量少的价格,就优先先选完便宜的饮料,由于询问的是一 ...

  8. 【XSY2720】区间第k小 整体二分 可持久化线段树

    题目描述 给你你个序列,每次求区间第\(k\)小的数. 本题中,如果一个数在询问区间中出现了超过\(w\)次,那么就把这个数视为\(n\). 强制在线. \(n\leq 100000,a_i<n ...

  9. 【BZOJ3110】K大数查询(权值线段树套线段树+标记永久化,整体二分)

    题意:有N个位置,M个操作.操作有两种,每次操作 如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c 如果是2 a b c形式,表示询问从第a个位置到第b个位置,第C大的数是 ...

随机推荐

  1. 音频播放 音乐 MediaPlayer

    MediaPlayer对象的生命周期如下: Idle 状态:当使用new()方法创建一个MediaPlayer对象或者调用了其reset()方法时,该MediaPlayer对象处于idle状态.这两种 ...

  2. TZOJ 3315 买火车票(线段树区间最小值)

    描述 Byteotian州铁道部决定赶上时代,为此他们引进了城市联网.假设城市联网顺次连接着n 个市从1 到n 编号(起始城市编号为1,终止城市编号为n).每辆火车有m个座位且在任何两个运送更多的乘客 ...

  3. [剑指Offer]35-复杂链表的复制

    链接 https://www.nowcoder.com/practice/f836b2c43afc4b35ad6adc41ec941dba?tpId=13&tqId=11178&tPa ...

  4. 用户管理系统之class

    接着上一篇博客继续往下总结,上一篇博客的地址:https://www.cnblogs.com/bainianminguo/p/9189324.html 我们开始吧 这里我们就需要先看下我们设计的数据库 ...

  5. redis 集群java.lang.NoSuchMethodError:SpringJAR包版本冲突错误解决方法

      项目中出现如下错误,记录下解决方法: org.springframework.beans.factory.BeanDefinitionStoreException: Unexpected exce ...

  6. JSP使用sessionScope获取session值

    场景:有些实体对象可以放到HttpSession对象中,保正在一个会话期间可以随时获取这个对象的属性,例如可以将登录用户的信息写入session,以保证页面随时可以获取并显示这个用户的状态信息.下面以 ...

  7. Selenium + Python + Firefox

    按网上教程搭建好环境后,执行下面的代码出现了错误: 测试代码如下: from selenium import webdriver driver=webdriver.Firefox() driver.g ...

  8. 如何将你拍摄的照片转换成全景图及六面体(PTGui)

    在完成全景照片的拍摄之后,接下来,我们需要的是进行全景图的拼接.全景图片分为两种类型1.立方体全景图(6面体)制作全景时通常使用该种格式 如下图 2.球形图(2:1的单张全景图片)2:1全景图宽高比例 ...

  9. 如何在Fragment中获取context

    文章转载自http://blog.csdn.net/demonliuhui/article/details/51511136 这里仅供自己学习参考: Context,中文直译为“上下文”,SDK中对其 ...

  10. swoole的EventLoop学习

    我们先使用php来写一个socket的服务端.先从最开始的模型开始将起逐步引申到为何要使用eventloop 1.最简单的socket服务端,直接按照官方文档来执行 <?php $sock = ...