[转]LCT讲解
LCT
(1)维护一个序列,支持下列操作:
区间求和
区间求最值
区间修改
求连续子段和
这个线段树就可以解决 具体做法不加累述了
(2)维护一个序列,支持下列操作:
区间求和
区间求最值
区间修改
求连续子段和
添加一段区间
删除一段区间
翻转一段区间
Splay的基本操作
(3)维护一棵树,支持下列操作:
链上求和
链上求最值
链上修改
子树修改
子树求和
树链剖分!!!
(4)维护一棵树,支持下列操作:
链上求和
链上求最值
链上修改
断开树上的一条边
连接两个点,保证连接后仍然是一棵树
由于树是动态的,我们不能每次操作都重标号一遍 树链剖分搞不了了
然而我们可以沿用树链剖分的轻重链剖分的概念
既然是动态那么我们肯定要把静态的线段树换成动态的Splay
于是就有LCT≈树链剖分+Splay
『引入一些概念』
Preferred Child:重儿子,重儿子与父亲节点同在一棵Splay中,一个节点最多只能有一个重儿子
Preferred Edge:重边,连接父亲节点和重儿子的边
Preferred Path:重链,由重边及重边连接的节点构成的链
『Auxiliary Tree(辅助树)』
由一条重链上的所有节点所构成的Splay称作这条链的辅助树
每个点的键值为这个点的深度
辅助树的根节点的父亲指向链顶的父亲节点,然而链顶的父亲节点的儿子并不指向辅助树的根节点
(儿子认爹&&爹不认儿子)
原树中的重链 -> 辅助树中两个节点位于同一棵Splay中
原树中的轻链 -> 辅助树中子节点所在Splay的根节点的father指向其父节点
注意原树与辅助树的结构并不相同
那么切入正题咯
那么LCT中最重要的操作可以说是….
『Access操作』
目的:将x的重边切断,并将x到根的路径上所有的边都搞成重边。
具体实现:根据辅助树按照深度为关键字的性质。不断地将一个结点的父亲转到根,然后把这个结点接到它父亲的右儿子,此时要切断x下面的所有重边
『Reverse操作』
目的:将原树中的x结点转到根。
具体实现:因为原树是虚树,所以在原树中进行变换实际上是在辅助树中进行变换。首先Access一个点,再将这个点在辅助树中转到根。又是根据辅助树按照深度为关键字的性质,将这个点所在的splay树反转,实际上改变了深度的关系,也就是实现的原树的换根。
那么知道这两个之后其他的都是小菜咯
『Link操作』
目的:将两个不连通的点连通。换句话来说,合并或扔到一颗树里。
具体实现:首先进行Reverse操作,在原树中将一个点转到那个点所在的树的根。然后将这个转到根的点的father接到另外一个点上。可以进行一次splay来update。
『Cut操作』
目的:将两个连通的点不连通,换句话说,把一棵树拆成两棵树。
具体实现:首先进行Reverse操作,在原树中将一个点转到那个点所在的树的根。然后Access另外一个点,把另外一个点在辅助树中转到根。由于这两个点原先是连通的,那么进行Access操作之后两个点在辅助树中一定是一个位于根,一个位于根的左儿子(深度)。所以在辅助树中把这个边砍掉就行了。
『Find操作』
目的:寻找一个点在原树中的根。
用于:判断两个点的连通性。
具体实现:首先Access这个点,然后在辅助树中将这个点转到根,由于辅助树按照深度为关键字排序,所以不断地向左子树寻找,就可以找到深度最小的根。
差不多就这些啦,还有一些奇怪的求和啊,维护最大值最小值什么的和线段树平衡树等数据结构基本一样。也难怪,LCT其实就是线段树、平衡树的延伸。
---------------------
作者:wwyx2001
来源:CSDN
原文:https://blog.csdn.net/Blue_CuSO4/article/details/78618811
版权声明:本文为博主原创文章,转载请附上博文链接!
[转]LCT讲解的更多相关文章
- 【模板篇】Link Cut Tree模板(指针)
网上一片一片的LCT都是数组写的 orz 用指针写splay的人想用指针写LCT找板子都不好找QAQ 所以能A题了之后自然要来回报社会, 把自己的板子丢上来(然而根本没有人会看) LCT讲解就省省吧, ...
- Link-Cut Tree(LCT)&TopTree讲解
前言: Link-Cut Tree简称LCT是解决动态树问题的一种数据结构,可以说是我见过功能最强大的一种树上数据结构了.在此与大家分享一下LCT的学习笔记.提示:前置知识点需要树链剖分和splay. ...
- 动态树之LCT(link-cut tree)讲解
动态树是一类要求维护森林的连通性的题的总称,这类问题要求维护某个点到根的某些数据,支持树的切分,合并,以及对子树的某些操作.其中解决这一问题的某些简化版(不包括对子树的操作)的基础数据结构就是LCT( ...
- LCT模板(无讲解)
怎么说呢,照着打一遍就自然理解了,再打一遍就会背了,再打一遍就会推了. // luogu-judger-enable-o2 #include<bits/stdc++.h> using na ...
- 平衡树及笛卡尔树讲解(旋转treap,非旋转treap,splay,替罪羊树及可持久化)
在刷了许多道平衡树的题之后,对平衡树有了较为深入的理解,在这里和大家分享一下,希望对大家学习平衡树能有帮助. 平衡树有好多种,比如treap,splay,红黑树,STL中的set.在这里只介绍几种常用 ...
- Luogu 3690 LCT - 模板
推荐几篇比较好的博客: FlashHu 的 讲解比较好 : 传送门 Candy 的 代码~ : 传送门 以及神犇Angel_Kitty的 学习笔记: 传送门 Code V 模板 #include< ...
- Lct浅谈
Lct浅谈 1.对lct的认识 首先要知道$lct$是什么.$lct$的全称为$link-cut-tree$.通过全称可以看出,这个数据结构是维护树上的问题,并且是可以支持连边断边操作.$lct$ ...
- LCT 学习笔记
LCT学习笔记 前言 自己定的学习计划看起来完不成了(两天没学东西,全在补题),决定赶快学点东西 于是就学LCT了 简介 Link/Cut Tree是一种数据结构,我们用它解决动态树问题 但是LCT不 ...
- bzoj 2049: [Sdoi]Cave 洞穴探测 (LCT)
第一次写lct (这是一道lct裸题 这次没有可爱(划掉)的同学教我,虽然有模板,但是配合网上的讲解还是看不懂QAQ 然后做了几道题之后总算有些感觉辣 于是决定给自己挖个坑,近期写一个lct详解(不过 ...
随机推荐
- cookie的安全性问题
HTTP协议: (1)请求组成部分: 请求行:(get或者post请求:请求路径(不包括主机) :http1.1) 请求头:请求头是浏览器交给服务器的一些信息(比较cookie啥的) 请求体:只有po ...
- SQL提高查询效率【in、not in、between、like】等条件讲述
在使用SQL语句查询数据库记录时,如果要查询相同的内容,有着不同的多种方法. 仍然,尽管使用多种方法可以得到相同的结果,但是,如果您使用不同的方法,在执行效益上是截然不同的.因此,我们得仔细考虑,如果 ...
- (转)Python中的模块循环导入问题
本文转自: https://wiki.woodpecker.org.cn/moin/MiscItems/2008-11-25 问题 cleven <shenglipang@gmail.com&g ...
- 第一节 Spring的环境搭建
正在构建,扫一扫,敬请期待 和玩得来的人在一起玩才叫玩! 和玩不来的人在一起玩,那种感觉就像加班啊! 关注胖个人微信公众账号,希望对各位学生有所帮助! --胖先生 Spring框架,什么是Sprin ...
- SQL记录-PLSQL记录
PL/SQL记录 PL/SQL记录就是可以容纳不同类型的数据项的数据结构.记录由不同字段,类似于数据库表的行. 例如,要保留跟踪图书馆中的书籍.可能要跟踪有关每本书下面的属性类似:标题,作者,主题 ...
- Lua程序设计(二)面向对象概念介绍
----------------------------------------------------------- Lua面向对象3 local smartMan = { name = " ...
- Python 装饰器入门(上)
翻译前想说的话: 这是一篇介绍python装饰器的文章,对比之前看到的类似介绍装饰器的文章,个人认为无人可出其右,文章由浅到深,由函数介绍到装饰器的高级应用,每个介绍必有例子说明.文章太长,看完原文后 ...
- 使用Cobbler批量部署Linux和Windows:Cobbler服务端部署(一)
本文记录了我使用Cobbler批量安装部署Linux和Windows系统的过程,文章主要分为三部分:Cobbler服务端的安装配置.Linux发行版CentOS和Ubuntu的自动安装部署.Windo ...
- VAE(Variational Autoencoder)的原理
Kingma, Diederik P., and Max Welling. "Auto-encoding variational bayes." arXiv preprint ar ...
- 理解 Memory barrier(内存屏障)【转】
转自:http://name5566.com/4535.html 参考文献列表:http://en.wikipedia.org/wiki/Memory_barrierhttp://en.wikiped ...