[转]LCT讲解
LCT
(1)维护一个序列,支持下列操作:
区间求和
区间求最值
区间修改
求连续子段和
这个线段树就可以解决 具体做法不加累述了
(2)维护一个序列,支持下列操作:
区间求和
区间求最值
区间修改
求连续子段和
添加一段区间
删除一段区间
翻转一段区间
Splay的基本操作
(3)维护一棵树,支持下列操作:
链上求和
链上求最值
链上修改
子树修改
子树求和
树链剖分!!!
(4)维护一棵树,支持下列操作:
链上求和
链上求最值
链上修改
断开树上的一条边
连接两个点,保证连接后仍然是一棵树
由于树是动态的,我们不能每次操作都重标号一遍 树链剖分搞不了了
然而我们可以沿用树链剖分的轻重链剖分的概念
既然是动态那么我们肯定要把静态的线段树换成动态的Splay
于是就有LCT≈树链剖分+Splay
『引入一些概念』
Preferred Child:重儿子,重儿子与父亲节点同在一棵Splay中,一个节点最多只能有一个重儿子
Preferred Edge:重边,连接父亲节点和重儿子的边
Preferred Path:重链,由重边及重边连接的节点构成的链
『Auxiliary Tree(辅助树)』
由一条重链上的所有节点所构成的Splay称作这条链的辅助树
每个点的键值为这个点的深度
辅助树的根节点的父亲指向链顶的父亲节点,然而链顶的父亲节点的儿子并不指向辅助树的根节点
(儿子认爹&&爹不认儿子)
原树中的重链 -> 辅助树中两个节点位于同一棵Splay中
原树中的轻链 -> 辅助树中子节点所在Splay的根节点的father指向其父节点
注意原树与辅助树的结构并不相同
那么切入正题咯
那么LCT中最重要的操作可以说是….
『Access操作』
目的:将x的重边切断,并将x到根的路径上所有的边都搞成重边。
具体实现:根据辅助树按照深度为关键字的性质。不断地将一个结点的父亲转到根,然后把这个结点接到它父亲的右儿子,此时要切断x下面的所有重边
『Reverse操作』
目的:将原树中的x结点转到根。
具体实现:因为原树是虚树,所以在原树中进行变换实际上是在辅助树中进行变换。首先Access一个点,再将这个点在辅助树中转到根。又是根据辅助树按照深度为关键字的性质,将这个点所在的splay树反转,实际上改变了深度的关系,也就是实现的原树的换根。
那么知道这两个之后其他的都是小菜咯
『Link操作』
目的:将两个不连通的点连通。换句话来说,合并或扔到一颗树里。
具体实现:首先进行Reverse操作,在原树中将一个点转到那个点所在的树的根。然后将这个转到根的点的father接到另外一个点上。可以进行一次splay来update。
『Cut操作』
目的:将两个连通的点不连通,换句话说,把一棵树拆成两棵树。
具体实现:首先进行Reverse操作,在原树中将一个点转到那个点所在的树的根。然后Access另外一个点,把另外一个点在辅助树中转到根。由于这两个点原先是连通的,那么进行Access操作之后两个点在辅助树中一定是一个位于根,一个位于根的左儿子(深度)。所以在辅助树中把这个边砍掉就行了。
『Find操作』
目的:寻找一个点在原树中的根。
用于:判断两个点的连通性。
具体实现:首先Access这个点,然后在辅助树中将这个点转到根,由于辅助树按照深度为关键字排序,所以不断地向左子树寻找,就可以找到深度最小的根。
差不多就这些啦,还有一些奇怪的求和啊,维护最大值最小值什么的和线段树平衡树等数据结构基本一样。也难怪,LCT其实就是线段树、平衡树的延伸。
---------------------
作者:wwyx2001
来源:CSDN
原文:https://blog.csdn.net/Blue_CuSO4/article/details/78618811
版权声明:本文为博主原创文章,转载请附上博文链接!
[转]LCT讲解的更多相关文章
- 【模板篇】Link Cut Tree模板(指针)
网上一片一片的LCT都是数组写的 orz 用指针写splay的人想用指针写LCT找板子都不好找QAQ 所以能A题了之后自然要来回报社会, 把自己的板子丢上来(然而根本没有人会看) LCT讲解就省省吧, ...
- Link-Cut Tree(LCT)&TopTree讲解
前言: Link-Cut Tree简称LCT是解决动态树问题的一种数据结构,可以说是我见过功能最强大的一种树上数据结构了.在此与大家分享一下LCT的学习笔记.提示:前置知识点需要树链剖分和splay. ...
- 动态树之LCT(link-cut tree)讲解
动态树是一类要求维护森林的连通性的题的总称,这类问题要求维护某个点到根的某些数据,支持树的切分,合并,以及对子树的某些操作.其中解决这一问题的某些简化版(不包括对子树的操作)的基础数据结构就是LCT( ...
- LCT模板(无讲解)
怎么说呢,照着打一遍就自然理解了,再打一遍就会背了,再打一遍就会推了. // luogu-judger-enable-o2 #include<bits/stdc++.h> using na ...
- 平衡树及笛卡尔树讲解(旋转treap,非旋转treap,splay,替罪羊树及可持久化)
在刷了许多道平衡树的题之后,对平衡树有了较为深入的理解,在这里和大家分享一下,希望对大家学习平衡树能有帮助. 平衡树有好多种,比如treap,splay,红黑树,STL中的set.在这里只介绍几种常用 ...
- Luogu 3690 LCT - 模板
推荐几篇比较好的博客: FlashHu 的 讲解比较好 : 传送门 Candy 的 代码~ : 传送门 以及神犇Angel_Kitty的 学习笔记: 传送门 Code V 模板 #include< ...
- Lct浅谈
Lct浅谈 1.对lct的认识 首先要知道$lct$是什么.$lct$的全称为$link-cut-tree$.通过全称可以看出,这个数据结构是维护树上的问题,并且是可以支持连边断边操作.$lct$ ...
- LCT 学习笔记
LCT学习笔记 前言 自己定的学习计划看起来完不成了(两天没学东西,全在补题),决定赶快学点东西 于是就学LCT了 简介 Link/Cut Tree是一种数据结构,我们用它解决动态树问题 但是LCT不 ...
- bzoj 2049: [Sdoi]Cave 洞穴探测 (LCT)
第一次写lct (这是一道lct裸题 这次没有可爱(划掉)的同学教我,虽然有模板,但是配合网上的讲解还是看不懂QAQ 然后做了几道题之后总算有些感觉辣 于是决定给自己挖个坑,近期写一个lct详解(不过 ...
随机推荐
- Java基础-通过POI接口处理xls
Java基础-通过POI接口处理xls 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任.
- python---redis管道(事务)和发布订阅
管道:将数据操作放在内存中,只有成功后,才会一次性全部放入redis #管道(事务),要是都成功则成功,失败一个全部失败 #原理:将数据操作放在内存中,只有成功后,才会一次性全部放入redis pip ...
- nodejs npm install -g 全局安装
1. npm install xxx -g 时, 模块将被下载安装到[全局目录]中. [全局目录]通过 npm config set prefix "目录路径" 来设置. 比如说, ...
- POJ - 1094 Sorting It All Out(拓扑排序)
https://vjudge.net/problem/POJ-1094 题意 对于N个大写字母,给定它们的一些关系,要求判断出经过多少个关系之后可以确定它们的排序或者排序存在冲突,或者所有的偏序关系用 ...
- Codeforces Round #477 (rated, Div. 2, based on VK Cup 2018 Round 3) F 构造
http://codeforces.com/contest/967/problem/F 题目大意: 有n个点,n*(n-1)/2条边的无向图,其中有m条路目前开启(即能走),剩下的都是关闭状态 定义: ...
- Spring RedisTemplate操作-xml配置(1)
网上没能找到全的spring redistemplate操作例子,故特意化了点时间做了接口调用练习,基本包含了所有redistemplate方法. 该操作例子是个系列,该片为spring xml配置, ...
- Java入门系列(八)多线程
基本线程类指的是Thread类,Runnable接口,Callable接口 典型多线程问题 生产者-消费者 死锁问题
- git 学习小记
话说 git 出了已经很久了,可是我一直没用过.其实也不是没用过,只不过在 github 上下载东西那根本就不是在用 git,只是单纯的HTTP下载而已.我们公司用的是 svn,所以我只会一点点svn ...
- Sublime Text 之运行 js 方法[2015-5-6更新mac下执行js]
昨天说完<Sublime Text 2 绿化与汉化 [Windows篇]>,今天我们来说说怎么用st直接运行 js 吧.群里的小伙伴一直对我的 ST 能直接运行js感到非常好奇,今天我就公 ...
- Red Pen - 快速高效的获取设计项目的反馈
Red Pen 让设计师能够快速,高效的从你的同事和客户获取反馈.只需要简单的拖放图像到 Red Pen 主页,然后把生成的链接分享给你的同事或者客户.他们打开链接就能看到设计稿,并给予实时的反馈,所 ...