洛谷题目链接:[USACO5.4]周游加拿大Canada Tour

题目描述

你赢得了一场航空公司举办的比赛,奖品是一张加拿大环游机票。旅行在这家航空公司开放的最西边的城市开始,然后一直自西向东旅行,直到你到达最东边的城市,再由东向西返回,直到你回到开始的城市。除了旅行开始的城市之外,每个城市只能访问一次,因为开始的城市必定要被访问两次(在旅行的开始和结束)。

当然不允许使用其他公司的航线或者用其他的交通工具。

给出这个航空公司开放的城市的列表,和两两城市之间的直达航线列表。找出能够访问尽可能多的城市的路线,这条路线必须满足上述条件,也就是从列表中的第一个城市开始旅行,访问到列表中最后一个城市之后再返回第一个城市。

输入输出格式

输入格式:

第 1 行: 航空公司开放的城市数 N 和将要列出的直达航线的数量 V。N 是一个不大于 100 的正整数。V 是任意的正整数。

第 2..N+1 行: 每行包括一个航空公司开放的城市名称。城市名称按照自西向东排列。不会出现两个城市在同一条经线上的情况。每个城市的名称都 是一个字符串,最多15字节,由拉丁字母表上的字母组成;城市名称中没有空格。

第 N+2..N+2+V-1 行: 每行包括两个城市名称(由上面列表中的城市名称组成),用一个空格分开。这样就表示两个城市之间的直达双程航线。

输出格式:

Line 1: 按照最佳路线访问的不同城市的数量 M。如果无法找到路线,输出 1。

输入输出样例

输入样例#1:

8 9

Vancouver

Yellowknife

Edmonton

Calgary

Winnipeg

Toronto

Montreal

Halifax

Vancouver Edmonton

Vancouver Calgary

Calgary Winnipeg

Winnipeg Toronto

Toronto Halifax

Montreal Halifax

Edmonton Montreal

Edmonton Yellowknife

Edmonton Calgary

输出样例#1:

7

说明

题目翻译来自NOCOW。

USACO Training Section 5.4

题意: 给出一张无向图,求从\(1\)出发到\(n\)然后再回到\(1\)的路径长度的最大值,要求不能重复经过某个点(除了\(1\)).

题解: 其实这题的想法和方格取数有点类似,推荐先去做一下这题.

我们发现用最短路之类的算法无法解决不重复经过某个点的问题,所以我们考虑换个办法.从\(1\)走到\(n\)再走回来实际上是相当于有两个人,一个人从\(1\)出发要到\(n\),另一个从\(n\)出发要到\(1\).所以我们设状态\(f[i][j]\)表示\(A\)从\(1\)出发走到了\(i\),\(B\)从\(n\)出发走到了\(j\)所能走出的最长路径的长度(并不要求\(A,B\)走的路径长度相同,只需要保存走的总路径长度).因为可以交换\(A,B\),所以\(f[i][j]=f[j][i]\).

那么该如何转移呢?显然首先需要枚举\(i,j\)表示\(A,B\)所走到的位置,然后我们还需要枚举一个\(k\)来转移,那么\(f[i][j] = f[j][i] = max \{ f[i][k]+1 \}\),为了保证不重复,就在枚举的时候使\(1\leq i<j\leq n,k\in [1,j-1]\).

初始条件为\(f[1][1]=1\),因为题目中说如果只有从\(1\)到\(n\)的路径,无法不经过重复点走回\(1\)就输出\(1\).

最后答案就从所有存在路径到\(n\)的点中取\(f[i][n]\)的最大值.

听说这个题目相当于是用\(floyd\)求最大环?然而这东西我并不会...

#include<bits/stdc++.h>
using namespace std;
const int N = 100+5; int n, m, edge[N][N], f[N][N], ans = 1; string s1, s2;
map <string, int> vis; int main(){
ios::sync_with_stdio(false);
cin >> n >> m;
for(int i = 1; i <= n; i++) cin >> s1, vis[s1] = i;
for(int i = 1; i <= m; i++)
cin >> s1 >> s2, edge[vis[s1]][vis[s2]] = edge[vis[s2]][vis[s1]] = 1;
memset(f, -0x3f, sizeof(f)), f[1][1] = 1;
for(int i = 1; i <= n; i++)
for(int j = i+1; j <= n; j++)
for(int k = 1; k < j; k++)
if(edge[j][k]) f[j][i] = f[i][j] = max(f[i][j], f[i][k]+1);
for(int i = 1; i <= n; i++)
if(edge[i][n]) ans = max(ans, f[i][n]);
cout << ans << endl;
return 0;
}

[洛谷P2747] [USACO5.4]周游加拿大Canada Tour的更多相关文章

  1. 洛谷 P2747 [USACO5.4]周游加拿大Canada Tour 解题报告

    P2747 [USACO5.4]周游加拿大Canada Tour 题目描述 你赢得了一场航空公司举办的比赛,奖品是一张加拿大环游机票.旅行在这家航空公司开放的最西边的城市开始,然后一直自西向东旅行,直 ...

  2. 洛谷 P2747 [USACO5.4]周游加拿大Canada Tour

    P2747 [USACO5.4]周游加拿大Canada Tour 题目描述 你赢得了一场航空公司举办的比赛,奖品是一张加拿大环游机票.旅行在这家航空公司开放的最西边的城市开始,然后一直自西向东旅行,直 ...

  3. P2747 [USACO5.4]周游加拿大Canada Tour

    题目描述 你赢得了一场航空公司举办的比赛,奖品是一张加拿大环游机票.旅行在这家航空公司开放的最西边的城市开始,然后一直自西向东旅行,直到你到达最东边的城市,再由东向西返回,直到你回到开始的城市.除了旅 ...

  4. 洛谷P2747周游加拿大Canada Tour [USACO5.4] dp

    正解:dp 解题报告: 传送门! 其实这题是我做网络流的时候发现了这题,感觉有点像双倍经验,,,? 但是我还不想写网络流的题解,,,因为网络流24题都还麻油做完,,,想着全做完了再写个总的题解什么的( ...

  5. 洛谷P1345 [USACO5.4]奶牛的电信Telecowmunication【最小割】分析+题解代码

    洛谷P1345 [USACO5.4]奶牛的电信Telecowmunication[最小割]分析+题解代码 题目描述 农夫约翰的奶牛们喜欢通过电邮保持联系,于是她们建立了一个奶牛电脑网络,以便互相交流. ...

  6. [洛谷P2750] [USACO5.5]贰五语言Two Five

    洛谷题目链接:[USACO5.5]贰五语言Two Five 题目描述 有一种奇怪的语言叫做"贰五语言".它的每个单词都由A-Y这25个字母各一个组成.但是,并不是任何一种排列都是一 ...

  7. [洛谷P1709] [USACO5.5]隐藏口令Hidden Password

    洛谷题目链接:[USACO5.5]隐藏口令Hidden Password 题目描述 有时候程序员有很奇怪的方法来隐藏他们的口令.Binny会选择一个字符串S(由N个小写字母组成,5<=N< ...

  8. [洛谷P2745] [USACO5.3]窗体面积Window Area

    洛谷题目链接:[USACO5.3]窗体面积Window Area 题目描述 你刚刚接手一项窗体界面工程.窗体界面还算简单,而且幸运的是,你不必显示实际的窗体.有 5 种基本操作: 创建一个新窗体 将窗 ...

  9. 洛谷 P2701 [USACO5.3]巨大的牛棚Big Barn Label:二维数组前缀和 你够了 这次我用DP

    题目背景 (USACO 5.3.4) 题目描述 农夫约翰想要在他的正方形农场上建造一座正方形大牛棚.他讨厌在他的农场中砍树,想找一个能够让他在空旷无树的地方修建牛棚的地方.我们假定,他的农场划分成 N ...

随机推荐

  1. 基础系列(5)—— C#控制语句

    语句是程序中最小程序指令.C#语言中可以使用多种类型的语句,每一种类型的语句又可以通过多个关键字实现.以下是C# 语言中使用的主要控制语句 类别 关键字 选择语句  if.else.switch.ca ...

  2. JAVA之路(一)

    距离做下复习JAVA并学好JAVA的决定已经过去一周了,我买了慕课网的JAVA入门视频,在图书馆借了三本关于JAVA的书——两本是JAVA入门经典,一本是JAVA WEB开发宝典.我的计划是短时间内复 ...

  3. Java JVM多线程

  4. python接口自动化测试框架实现之操作mysq数据库

    python操作mysql数据库需要使用到mysqlclient库. 安装:pip install mysqlclient python连接mysql数据库分以下步骤: 1.与mysql建立连接: 2 ...

  5. TCP建立连接和断开连接过程

    假设Client端发起中断连接请求,也就是发送FIN报文.Server端接到FIN报文后,意思是说"我Client端没有数据要发给你了",但是如果你还有数据没有发送完成,则不必急着 ...

  6. SQL优化套路

    直奔主题: (1) SELECT(2) DISTINCT <SELECT_LIST>(3) FROM <LEFT_TABLE> <JOIN_TYPE> (4) JO ...

  7. bzoj2669-局部极小值

    题意 有一个 \(n\times m\) 的矩阵,其中每个数都是 \([1,n\times m]\) 中的一个,不会重复.有一些地方的值比周围的8个位置都小(如果有的话).给出这些位置,求这样的矩阵有 ...

  8. bzoj4569-萌萌哒

    题目 有一个长度为\(n\)的十进制数,用\(s\)表示.有\(m\)个限制条件,每个条件形如:\((l_1,r_1,l_2,r_2)\),表示\(s[l_1:r_1]=s[l_2:r_2]\). 现 ...

  9. 【Linux】无法将 Ethernet0 连接到虚拟网络“VMnet8”

    Linux安装centos之后,可能会出现ipconfig命令之后没有看到eth0信息,只有lo.log日志包的错为:无法将 Ethernet0 连接到虚拟网络“VMnet8” 解决办法有: 1.在虚 ...

  10. BZOJ3743 COCI2015Kamp(树形dp)

    设f[i]为由i开始遍历完子树内所要求的点的最短时间,g[i]为由i开始遍历完子树内所要求的点最后回到i的最短时间.则g[i]=Σ(g[j]+2),f[i]=min{g[i]-g[j]+f[j]-1} ...