[洛谷P2747] [USACO5.4]周游加拿大Canada Tour
洛谷题目链接:[USACO5.4]周游加拿大Canada Tour
题目描述
你赢得了一场航空公司举办的比赛,奖品是一张加拿大环游机票。旅行在这家航空公司开放的最西边的城市开始,然后一直自西向东旅行,直到你到达最东边的城市,再由东向西返回,直到你回到开始的城市。除了旅行开始的城市之外,每个城市只能访问一次,因为开始的城市必定要被访问两次(在旅行的开始和结束)。
当然不允许使用其他公司的航线或者用其他的交通工具。
给出这个航空公司开放的城市的列表,和两两城市之间的直达航线列表。找出能够访问尽可能多的城市的路线,这条路线必须满足上述条件,也就是从列表中的第一个城市开始旅行,访问到列表中最后一个城市之后再返回第一个城市。
输入输出格式
输入格式:
第 1 行: 航空公司开放的城市数 N 和将要列出的直达航线的数量 V。N 是一个不大于 100 的正整数。V 是任意的正整数。
第 2..N+1 行: 每行包括一个航空公司开放的城市名称。城市名称按照自西向东排列。不会出现两个城市在同一条经线上的情况。每个城市的名称都 是一个字符串,最多15字节,由拉丁字母表上的字母组成;城市名称中没有空格。
第 N+2..N+2+V-1 行: 每行包括两个城市名称(由上面列表中的城市名称组成),用一个空格分开。这样就表示两个城市之间的直达双程航线。
输出格式:
Line 1: 按照最佳路线访问的不同城市的数量 M。如果无法找到路线,输出 1。
输入输出样例
输入样例#1:
8 9
Vancouver
Yellowknife
Edmonton
Calgary
Winnipeg
Toronto
Montreal
Halifax
Vancouver Edmonton
Vancouver Calgary
Calgary Winnipeg
Winnipeg Toronto
Toronto Halifax
Montreal Halifax
Edmonton Montreal
Edmonton Yellowknife
Edmonton Calgary
输出样例#1:
7
说明
题目翻译来自NOCOW。
USACO Training Section 5.4
题意: 给出一张无向图,求从\(1\)出发到\(n\)然后再回到\(1\)的路径长度的最大值,要求不能重复经过某个点(除了\(1\)).
题解: 其实这题的想法和方格取数有点类似,推荐先去做一下这题.
我们发现用最短路之类的算法无法解决不重复经过某个点的问题,所以我们考虑换个办法.从\(1\)走到\(n\)再走回来实际上是相当于有两个人,一个人从\(1\)出发要到\(n\),另一个从\(n\)出发要到\(1\).所以我们设状态\(f[i][j]\)表示\(A\)从\(1\)出发走到了\(i\),\(B\)从\(n\)出发走到了\(j\)所能走出的最长路径的长度(并不要求\(A,B\)走的路径长度相同,只需要保存走的总路径长度).因为可以交换\(A,B\),所以\(f[i][j]=f[j][i]\).
那么该如何转移呢?显然首先需要枚举\(i,j\)表示\(A,B\)所走到的位置,然后我们还需要枚举一个\(k\)来转移,那么\(f[i][j] = f[j][i] = max \{ f[i][k]+1 \}\),为了保证不重复,就在枚举的时候使\(1\leq i<j\leq n,k\in [1,j-1]\).
初始条件为\(f[1][1]=1\),因为题目中说如果只有从\(1\)到\(n\)的路径,无法不经过重复点走回\(1\)就输出\(1\).
最后答案就从所有存在路径到\(n\)的点中取\(f[i][n]\)的最大值.
听说这个题目相当于是用\(floyd\)求最大环?然而这东西我并不会...
#include<bits/stdc++.h>
using namespace std;
const int N = 100+5;
int n, m, edge[N][N], f[N][N], ans = 1;
string s1, s2;
map <string, int> vis;
int main(){
ios::sync_with_stdio(false);
cin >> n >> m;
for(int i = 1; i <= n; i++) cin >> s1, vis[s1] = i;
for(int i = 1; i <= m; i++)
cin >> s1 >> s2, edge[vis[s1]][vis[s2]] = edge[vis[s2]][vis[s1]] = 1;
memset(f, -0x3f, sizeof(f)), f[1][1] = 1;
for(int i = 1; i <= n; i++)
for(int j = i+1; j <= n; j++)
for(int k = 1; k < j; k++)
if(edge[j][k]) f[j][i] = f[i][j] = max(f[i][j], f[i][k]+1);
for(int i = 1; i <= n; i++)
if(edge[i][n]) ans = max(ans, f[i][n]);
cout << ans << endl;
return 0;
}
[洛谷P2747] [USACO5.4]周游加拿大Canada Tour的更多相关文章
- 洛谷 P2747 [USACO5.4]周游加拿大Canada Tour 解题报告
P2747 [USACO5.4]周游加拿大Canada Tour 题目描述 你赢得了一场航空公司举办的比赛,奖品是一张加拿大环游机票.旅行在这家航空公司开放的最西边的城市开始,然后一直自西向东旅行,直 ...
- 洛谷 P2747 [USACO5.4]周游加拿大Canada Tour
P2747 [USACO5.4]周游加拿大Canada Tour 题目描述 你赢得了一场航空公司举办的比赛,奖品是一张加拿大环游机票.旅行在这家航空公司开放的最西边的城市开始,然后一直自西向东旅行,直 ...
- P2747 [USACO5.4]周游加拿大Canada Tour
题目描述 你赢得了一场航空公司举办的比赛,奖品是一张加拿大环游机票.旅行在这家航空公司开放的最西边的城市开始,然后一直自西向东旅行,直到你到达最东边的城市,再由东向西返回,直到你回到开始的城市.除了旅 ...
- 洛谷P2747周游加拿大Canada Tour [USACO5.4] dp
正解:dp 解题报告: 传送门! 其实这题是我做网络流的时候发现了这题,感觉有点像双倍经验,,,? 但是我还不想写网络流的题解,,,因为网络流24题都还麻油做完,,,想着全做完了再写个总的题解什么的( ...
- 洛谷P1345 [USACO5.4]奶牛的电信Telecowmunication【最小割】分析+题解代码
洛谷P1345 [USACO5.4]奶牛的电信Telecowmunication[最小割]分析+题解代码 题目描述 农夫约翰的奶牛们喜欢通过电邮保持联系,于是她们建立了一个奶牛电脑网络,以便互相交流. ...
- [洛谷P2750] [USACO5.5]贰五语言Two Five
洛谷题目链接:[USACO5.5]贰五语言Two Five 题目描述 有一种奇怪的语言叫做"贰五语言".它的每个单词都由A-Y这25个字母各一个组成.但是,并不是任何一种排列都是一 ...
- [洛谷P1709] [USACO5.5]隐藏口令Hidden Password
洛谷题目链接:[USACO5.5]隐藏口令Hidden Password 题目描述 有时候程序员有很奇怪的方法来隐藏他们的口令.Binny会选择一个字符串S(由N个小写字母组成,5<=N< ...
- [洛谷P2745] [USACO5.3]窗体面积Window Area
洛谷题目链接:[USACO5.3]窗体面积Window Area 题目描述 你刚刚接手一项窗体界面工程.窗体界面还算简单,而且幸运的是,你不必显示实际的窗体.有 5 种基本操作: 创建一个新窗体 将窗 ...
- 洛谷 P2701 [USACO5.3]巨大的牛棚Big Barn Label:二维数组前缀和 你够了 这次我用DP
题目背景 (USACO 5.3.4) 题目描述 农夫约翰想要在他的正方形农场上建造一座正方形大牛棚.他讨厌在他的农场中砍树,想找一个能够让他在空旷无树的地方修建牛棚的地方.我们假定,他的农场划分成 N ...
随机推荐
- 关于双系统下Ubuntu不能访问Windows中某个盘的问题
1.问题描述 在Ubuntu系统下访问Windows系统中磁盘时出现无法访问的情况,具体如下显示: 该问题为磁盘挂载错误,需要进行修复. 2.解决办法 (1)打开终端:如果没有安装ntfs ...
- 0330复利计算java版
package compounding; import java.util.Scanner; public class compounding1_1 { public static void main ...
- jdk&tomcat环境变量配置及同时运行多个tomcat方法
一:jdk配置 安装jdk1.7.0_51,安装过程中所有选项保持默认:最后配置 JDK的环境变量: 在“我的电脑”上点右键—>“属性”—>“高级”—>“环境变量(N)”. 1.新建 ...
- 51nod 1677 treecnt(思维)
题意: 给定一棵n个节点的树,从1到n标号.选择k个点,你需要选择一些边使得这k个点通过选择的边联通,目标是使得选择的边数最少. 现需要计算对于所有选择k个点的情况最小选择边数的总和为多少. 考虑每条 ...
- addEventListener和attachEvent区别
addEventListener()是标准的绑定事件监听函数的方法,是W3C所支持的,Chrome.FireFox.Opera.Safari.IE9.0及其以上版本都支持该函数:但是,IE8.0及其以 ...
- 【Java】POI的HSSFRichTextString介绍
在使用Apache的POI库生成EXCEL文件时,经常会遇到这样的情况:使用不同的格式格式化一个单元格中的内容,比如说:一个单元格的内容是“first, second”,现在要分别使用红色带删除线格式 ...
- 为什么我再也不想和 Google HR 交谈了
英文:yegor256,编译:伯乐在线/心灵是一棵开花的树 http://blog.jobbole.com/110340/ [伯乐在线导读]: 关于程序员面试时现场写代码,估计大家还记得 2015 年 ...
- Mybatis笔记四:Mybatis中的resultType和resultMap查询操作实例详解
resultType和resultMap只能有一个成立,resultType是直接表示返回类型的,而resultMap则是对外部ResultMap的引用,resultMap解决复杂查询是的映射问题.比 ...
- 【BZOJ5248】【九省联考2018】一双木棋(搜索,哈希)
[BZOJ5248][九省联考2018]一双木棋(搜索,哈希) 题面 BZOJ Description 菲菲和牛牛在一块n行m列的棋盘上下棋,菲菲执黑棋先手,牛牛执白棋后手.棋局开始时,棋盘上没有任何 ...
- 十大最佳Leap Motion体感控制器应用
十大最佳Leap Motion体感控制器应用 Leap Motion Controller也许还没有准备好大规模的发售,但是毫无疑问,这款小巧的动作捕捉器是我们见过的最酷的设备之一.这款设备的硬件 ...