LINK

题意:给出一个点集,问能否够构成一个稳定凸包,即加入新点后仍然不变。

思路:对凸包的唯一性判断,对任意边判断是否存在三点及三点以上共线,如果有边不满足条件则NO,注意使用水平序,这样一来共线点的包括也较为容易,而极角序对始边和终边的共线问题较为麻烦。

/** @Date    : 2017-07-17 21:08:41
* @FileName: POJ 1228 稳定凸包.cpp
* @Platform: Windows
* @Author : Lweleth (SoungEarlf@gmail.com)
* @Link : https://github.com/
* @Version : $Id$
*/
#include <stdio.h>
#include <iostream>
#include <string.h>
#include <algorithm>
#include <utility>
#include <vector>
#include <map>
#include <set>
#include <string>
#include <stack>
#include <queue>
#include <math.h>
//#include <bits/stdc++.h>
#define LL long long
#define PII pair<int ,int>
#define MP(x, y) make_pair((x),(y))
#define fi first
#define se second
#define PB(x) push_back((x))
#define MMG(x) memset((x), -1,sizeof(x))
#define MMF(x) memset((x),0,sizeof(x))
#define MMI(x) memset((x), INF, sizeof(x))
using namespace std; const int INF = 0x3f3f3f3f;
const int N = 1e5+20;
const double eps = 1e-8; struct point
{
double x, y;
point(){}
point(double _x, double _y){x = _x, y = _y;}
point operator -(const point &b) const
{
return point(x - b.x, y - b.y);
}
double operator *(const point &b) const
{
return x * b.x + y * b.y;
}
double operator ^(const point &b) const
{
return x * b.y - y * b.x;
}
}; double xmult(point p1, point p2, point p0)
{
return (p1 - p0) ^ (p2 - p0);
} double distc(point a, point b)
{
return sqrt((double)((b - a) * (b - a)));
}
int sign(double x)
{
if(fabs(x) < eps)
return 0;
if(x < 0)
return -1;
else
return 1;
} ////////
int n;
point stk[N];
point p[N];
int cmp(point a, point b)//以p[0]基准 极角序排序
{
int t = xmult(a, b, p[0]);
if(t > 0)
return 1;
if(t == 0)
return distc(a, p[0]) < distc(b, p[0]);
if(t < 0)
return 0;
}
int cmpC(point a, point b)//水平序排序
{
return sign(a.x - b.x) < 0 || (sign(a.x - b.x) == 0 && sign(a.y - b.y) < 0);
}
int GrahamA()
{
double mix, miy;
mix = miy = 1e10;
int pos = 0;
for(int i = 0; i < n; i++)
{
if(p[i].y < miy || (p[i].y == miy && p[i].x < mix))
{
mix = p[i].x, miy = p[i].y;
pos = i;
}
}
swap(p[0], p[pos]);
sort(p + 1, p + n, cmp);
int top = 0;
stk[0] = p[0];
stk[1] = p[1];
for(int i = 0; i < n; i++)
{
while(top >= 2 && sign(xmult(stk[top - 2], stk[top - 1], p[i])) < 0)
top--;
stk[top++] = p[i];
}
//stk[++top] = p[0];
return top;
} int Graham()//水平序
{
sort(p, p + n, cmpC);
int top = 0;
for(int i = 0; i < n; i++)
{
while(top >= 2 && sign(xmult(stk[top - 2], stk[top - 1], p[i])) < 0)
top--;
stk[top++] = p[i];
}
int tmp = top;
for(int i = n - 2; i >= 0; i--)
{
while(top > tmp && sign(xmult(stk[top - 2],stk[top - 1] ,p[i] )) < 0)
top--;
stk[top++] = p[i];
}
if(n > 1)
top--;
return top;
} int check(int m)
{
//cout << m << endl;
for(int i = 1; i < m; i++)
{
//cout << i << endl;
//cout << "x:" << stk[i].x << "y:" << stk[i].y << endl;
//cout << xmult(stk[i - 1], stk[(i + 1)%(m)], stk[i]) << "~" << xmult(stk[i], stk[(i + 2)%(m)], stk[(i + 1)%(m)]) << endl; if(sign(xmult(stk[i - 1], stk[(i + 1)%(m)], stk[i])) != 0
&& sign(xmult(stk[i], stk[(i + 2)%(m)], stk[(i + 1)%(m)])) != 0)
return 0;
}
return 1;
}
/////////
int main()
{
int T;
cin >> T;
while(T--)
{
scanf("%d", &n);
for(int i = 0; i < n; i++)
{
double x, y;
scanf("%lf%lf", &x, &y);
p[i] = point(x, y);
}
if(n < 6)
{
printf("NO\n");
continue;
}
int cnt = Graham();
// for(int i = 0 ; i < cnt; i++)
// cout << stk[i].x << "%" << stk[i].y << endl;
printf("%s\n", check(cnt)?"YES":"NO"); }
return 0;
}

POJ 1228 Grandpa's Estate 凸包 唯一性的更多相关文章

  1. POJ 1228 Grandpa's Estate(凸包)

    Grandpa's Estate Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 11289   Accepted: 3117 ...

  2. POJ 1228 - Grandpa's Estate 稳定凸包

    稳定凸包问题 要求每条边上至少有三个点,且对凸包上点数为1,2时要特判 巨坑无比,调了很长时间= = //POJ 1228 //稳定凸包问题,等价于每条边上至少有三个点,但对m = 1(点)和m = ...

  3. POJ 1228 Grandpa's Estate(凸包唯一性判断)

    Description Being the only living descendant of his grandfather, Kamran the Believer inherited all o ...

  4. POJ 1228 Grandpa's Estate --深入理解凸包

    题意: 判断凸包是否稳定. 解法: 稳定凸包每条边上至少有三个点. 这题就在于求凸包的细节了,求凸包有两种算法: 1.基于水平序的Andrew算法 2.基于极角序的Graham算法 两种算法都有一个类 ...

  5. 简单几何(求凸包点数) POJ 1228 Grandpa's Estate

    题目传送门 题意:判断一些点的凸包能否唯一确定 分析:如果凸包边上没有其他点,那么边想象成橡皮筋,可以往外拖动,这不是唯一确定的.还有求凸包的点数<=2的情况一定不能确定. /********* ...

  6. poj - 1228 - Grandpa's Estate

    题意:原来一个凸多边形删去一些点后剩n个点,问这个n个点能否确定原来的凸包(1 <= 测试组数t <= 10,1 <= n <= 1000). 题目链接:http://poj. ...

  7. 【POJ】1228 Grandpa's Estate(凸包)

    http://poj.org/problem?id=1228 随便看看就能发现,凸包上的每条边必须满足,有相邻的边和它斜率相同(即共线或凸包上每个点必须一定在三点共线上) 然后愉快敲完凸包+斜率判定, ...

  8. 【POJ 1228】Grandpa's Estate 凸包

    找到凸包后暴力枚举边进行$check$,注意凸包是一条线(或者说两条线)的情况要输出$NO$ #include<cmath> #include<cstdio> #include ...

  9. poj 1228 稳定凸包

    Grandpa's Estate Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 12337   Accepted: 3451 ...

随机推荐

  1. struts-resultType属性

    1.默认dispatcher:forward方式,服务器端跳转 2.redirect:客户端跳转 3.chain:Action转发,forward方式,服务器端跳转action 4.redirectA ...

  2. tomcat开发环境配置

    1.环境配置教程 环境变量.安装版.配置版 2.编写启动tomcat的批处理文件 3.改变端口 4.虚拟目录

  3. C语言文法阅读与理解序

    <指针>→*  | * < 指针> <直接声明符>  <标识符> | <直接声明>[]| <直接声明>[常量表达式] | < ...

  4. 201621123037 《Java程序设计》第1周学习总结

    #作业01-Java基本概念 1. 本周学习总结 本周学习内容JDK JVM JRE 跨平台 .java .class 关键概念之间的联系: 总的来讲JDK是给开发人员们提供专门用来开发的环境,并且包 ...

  5. Linux的压缩/解压缩文件处理 zip & unzip

    Linux的压缩/解压缩命令详解及实例 压缩服务器上当前目录的内容为xxx.zip文件 zip -r xxx.zip ./* 解压zip文件到当前目录 unzip filename.zip 另:有些服 ...

  6. 微信小程序 跳坑

    http://www.wxapp-union.com/forum.php?mod=viewthread&tid=3270

  7. windows操作系统下载tomcat,并与eclipse进行整合

    进入Tomcat官网之后,在左边我们看到,Tomcat的有6,7,8这三个最流行的版本,我们可以点击进去下载想要的版本. 进入里面之后,可以看见有64位的和32位的,就看自己的电脑是多少位的了,如果电 ...

  8. [LeetCode] PathSum

    Given a binary tree and a sum, determine if the tree has a root-to-leaf path such that adding up all ...

  9. 最小生成树-Borůvka算法

    一般求最小生成树的时候,最流行的是Kruskal算法,一种基于拟阵证明的贪心,通过给边排序再扫描一次边集,利用并查集优化得到,复杂度为\(O(ElogE)\).另一种用得比较少的是Prim算法,利用优 ...

  10. 802.1p 优先级与内部优先级的映射关系

    缺省情况下,所有华为 S 系列交换机的 802.1P 优先级 与内部优先级的映射关系是 一 样的,如表 10-3 所示.从中可以看出,这些交换机中 802.1p 优先级与内部优先级的缺省映射关系是按等 ...