PKU 3318 Matrix Multiplication(随机化算法||状态压缩)
题目大意:原题链接
给定三个n*n的矩阵A,B,C,验证A*B=C是否成立.
所有解法中因为只测试一组数据,因此没有使用memset清零
Hint中给的傻乎乎的TLE版本:
#include<cstdio>
#include<cstring>
int n,A[][];
int B[][],C[][];
void Input(int m[][])
{
for(int i=;i<=n;i++){
for(int j=;j<=n;j++)
scanf("%d",&m[i][j]);
}
}
int main()
{
scanf("%d",&n);
bool sign=true;
Input(A),Input(B),Input(C);
for(int i=;i<=n&&sign;i++){
for(int j=;j<=n&&sign;j++){
int sum=;
for(int k=;k<=n&&sign;k++)
sum+=A[i][k]*B[k][j];
if(sum!=C[i][j]) sign=false;
}
}
if(sign) printf("YES");
else printf("NO");
}
AC版本解法一:神奇的输入优化

之前就看到过几次一个神奇的输入模板,不知道这段代码是否就是那个(提交多次,觉得估计在提交人数多时容易超时)
#include<cstdio>
using namespace std;
int n,A[][];
int B[][],C[][]; int Read()
{
int d=;
char ch,t=;
while((ch=getchar())==' '||ch=='\n') ;
if(ch=='-') t=;
else d=ch-'';
while((ch=getchar())>=''&&ch<='')
d=d*+ch-'';
if(t) return -d;
else return d;
} int main()
{
scanf("%d",&n);
bool sign=true;
for(int i=;i<n;i++){
for(int j=;j<n;j++)
A[i][j]=Read();
}
for(int i=;i<n;i++){
for(int j=;j<n;j++)
B[i][j]=Read();
}
for(int i=;i<n;i++){
for(int j=;j<n;j++)
C[i][j]=Read();
}
for(int i=;i<n&&sign;i++){
for(int j=;j<n&&sign;j++){
int sum=;
for(int k=;k<n;k++)
sum+=A[i][k]*B[k][j];
if(sum!=C[i][j]){
sign=false;
break;
}
}
}
if(sign) printf("YES");
else printf("NO");
}
AC版本解法二:稳稳的随机化算法

#include<ctime>
#include<cstdio>
#include<cstdlib>
#define TLE 2000
int n,A[][];
int B[][],C[][]; void Input(int m[][])
{
for(int i=;i<=n;i++){
for(int j=;j<=n;j++)
scanf("%d",&m[i][j]);
}
}
bool Judge()
{
int r,c;//随机行数,列数
int time=*TLE;//注意取的次数需要适当
while(time--){
r=rand()%n+,c=rand()%n+;
int sum=;
for(int k=;k<=n;k++)
sum+=A[r][k]*B[k][c];
if(sum!=C[r][c]) return ;
}
return ;
} int main()
{
scanf("%d",&n);
srand(time(NULL));
Input(A),Input(B),Input(C);
if(Judge()) printf("YES");
else printf("NO");
}
AC版本解法三:流弊的状态压缩
思路;
/*
Problem B: Matrix Multiplication
The author gives an approximate algorithm rather than a precise one.
Randomize a n ×1 matrix X, test if the equation A × B × X = C × X holds true.
If it is not true we can safely say "NO" to this problem.
If it is true, the possibility that A × B ≠ X is extremely little.
*/
上面是北大网站上的提示,用行向量把C矩阵和A*B矩阵压缩了,看这一句:
Randomize a n ×1 matrix X,用一个随机的列向量。
具体怎实现呢?
用压缩矩阵再比较的方法:
我习惯左乘一个行向量,所以设一个行向量X,X是1*n的矩阵,若A*B等于C则必有X*A*B等于X*C,虽然多乘了一个向量,但是时间复杂度却降低到了O(n^2)了。
这样解的实质是把一个方阵压缩成了一个行向量,向量的每一个元素都是原矩阵该列的的和,也就是说用和来比较。这样大大节省了时间。但是带来一个问题:
如这两个矩阵:
x x x x x x x x x x x x x x x x x x x x
x x 1 x x x x 1 x x x x 0 x x x x 2 x x
x x x x x x x x x x x x x x x x x x x x
x x 1 x x x x 1 x x x x 2 x x x x 0 x x
…… ……
x x x x x x x x x x x x x x x x x x x x
用压缩再比较的方法不能得到正确结果。压缩再比较的关键在于怎么样在和中体现原来每个元素的个性。关键就是X行向量怎么设定。题目在比赛结束后提示是一个随机的向量X,就是把X的每个元素设为随机数。我觉得可以把X设为一个递增的向量:{1、2、…、n},这样更能体现每个元素的个性,而随机有可能在关键点上出现错误。

#include<cstdio>
int n,A[][];
int B[][],C[][];
int E[],e[],t[];
void Input(int m[][])
{
for(int i=;i<=n;i++){
for(int j=;j<=n;j++)
scanf("%d",&m[i][j]);
}
}
bool Judge(int n)
{
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
t[i]+=j*A[j][i];
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
e[i]+=t[j]*B[j][i];
for(int i=;i<=n;i++)
if(e[i]!=E[i]) return false;
return true;
}
int main()
{
scanf("%d",&n);
Input(A),Input(B),Input(C);
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
E[i]+=j*C[j][i];//关键部分:j*C[j][i]就是给C矩阵左乘了一个递增的行向量X:{1,2,3,...,n}
if(Judge(n)) printf("YES");
else printf("NO");
}
PKU 3318 Matrix Multiplication(随机化算法||状态压缩)的更多相关文章
- poj 3318 Matrix Multiplication 随机化算法
方法1:暴力法 矩阵乘法+优化可以卡时间过的. 方法2:随机化 随机构造向量x[1..n],则有xAB=xC;这样可以将小运算至O(n^2). 代码如下: #include<iostream&g ...
- POJ 3318 Matrix Multiplication(随机算法)
题目链接 随机算法使劲水...srand((unsigned)time(0))比srand(NULL)靠谱很多,可能是更加随机. #include <cstdio> #include &l ...
- PKU 3318 Matrix Multiplication(神奇的输入)
#include<cstdio> using namespace std; ][]; ][],C[][]; int Read() { ; ; while((ch=getchar())==' ...
- 数学(矩阵乘法,随机化算法):POJ 3318 Matrix Multiplication
Matrix Multiplication Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 17783 Accepted: ...
- Poj 3318 Matrix Multiplication( 矩阵压缩)
Matrix Multiplication Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 18928 Accepted: ...
- POJ3318--Matrix Multiplication 随机化算法
Description You are given three n × n matrices A, B and C. Does the equation A × B = C hold true? In ...
- POJ 3318 - Matrix Multiplication 第一次用随机化解决问题...
随机化还是很厉害的...印象最深的是以前手写快排~~一般加个随机化会使耗时不受输入数据的..时间更加稳定 这个题是人品题了...开始交了好多遍都过不了..多交几次终于过了... Program: #i ...
- [poj 3318] Matrix Multiplication (随机化+矩阵)
Description You are given three n × n matrices A, B and C. Does the equation A × B = C hold true? In ...
- poj 3318 Matrix Multiplication
http://poj.org/problem?id=3318 矩阵A*矩阵B是否等于矩阵C #include <cstdio> #include <cstring> #incl ...
随机推荐
- ubuntu安装wineqq遇到错误
在安装中发生了错误:Errors were encountered while processing: wine-qqintl 原因是还有lib没有配置,所以再输入sudo apt-get insta ...
- thinkphp中phpexcel的使用
1.下载phpexcel文件(之前提到过!) 2.下载后将文件放到: 3.在控制器中引用: 4.部分实现的代码: public function OutputExcel($data) //导入订单 { ...
- 在化学教学中怎么用ChemOffice
在21世纪新课程化学教学中,有很多地方要求化学教师使用计算机和应用程序处理各类化学信息,比如课堂教学.撰写教学论文.制作多媒体课件等,这样可以有效增强教学效果.作为化学教师,在新课程的化学教学中掌握一 ...
- 多线程环境下调用 HttpWebRequest 并发连接限制
.net 的 HttpWebRequest 或者 WebClient 在多线程情况下存在并发连接限制,这个限制在桌面操作系统如 windows xp , windows 7 下默认是2,在服务器操作 ...
- docker容器跨服务器的迁移
docker的备份方式有export和save两种. export是当前的状态,针对的是容器,docker save 是针对镜像images. export 找出要备份容器的ID [root@wls1 ...
- dubbo项目实战代码展示
最近公司项目使用dubbo服务,于是就去网上搜索关于dubbo的相关资料,真的很多,但是对于很多人并不是很了解框架或者 不是太适合新手的片段代码,于是我就根据项目的相关内容把dubbo部分单独切出来, ...
- 《从零开始学Swift》学习笔记(Day 68)——Cocoa Touch设计模式及应用之响应者链与触摸事件
原创文章,欢迎转载.转载请注明:关东升的博客 应用与用户进行交互,依赖于各种各样的事件.事件响应者对象是可以响应事件并对其进行处理的对象,响应者链是由一系列链接在一起的响应者组成的.响应者链在事件处理 ...
- MAC OSX安装多个版本的JAVA(jdk jre通用)
MAC自带的jdk1.6是苹果公司自己修改的jdk版本,被广泛应用于各种mac软件,具有不可替代性:同时,java1.7和1.8有时也需要用到.因此,在mac上安装.使用多个版本的java具有重要意义 ...
- 1.1 VGA(图像显示卡),Graphics Card(图形加速卡),Video Card(视频加速卡),3D Accelerator Card 和 GPU(图形处理器)
1.1 VGA(图像显示卡),Graphics Card(图形加速卡),Video Card(视频加速卡),3D Accelerator Card 和 GPU(图形处理器) 对这些概念之前也没怎么了解 ...
- Apache Kafka源码分析 – Broker Server
1. Kafka.scala 在Kafka的main入口中startup KafkaServerStartable, 而KafkaServerStartable这是对KafkaServer的封装 1: ...