利用百度API(JavaScript 版)实现在地图上绘制任一多边形,并判断给定经纬度是否在多边形范围内。以及两点间的测距功能
权声明:本文为博主原创文章,未经博主允许不得转载。
利用百度API(JavaScript 版)实现在地图上绘制任一多边形,并判断给定经纬度是否在多边形范围内。以及两点间的测距功能。
- 绘制多边形(蓝色),折线轨迹(红色)效果图:
- <img src="http://img.blog.csdn.net/20150915193750707?watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQv/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" alt="" />
判断点范围,测距:
html代码:
- <!DOCTYPE html>
- <html>
- <head>
- <meta http-equiv="Content-Type" content="text/html; charset=gbk" />
- <meta name="viewport" content="initial-scale=1.0, user-scalable=no" />
- <style type="text/css">
- body, html{width: 100%;height: 100%;margin:0;font-family:"微软雅黑";}
- #allmap {height:500px; width: 100%;}
- #control{width:100%;}
- </style>
- <script type="text/javascript" src="http://api.map.baidu.com/api?v=2.0&ak=iqgvSM0gddG4NkGXFlawVa6C"></script>
- <script type="text/javascript" src="GeoUtils.js"></script>
- <title>设置线、面可编辑</title>
- </head>
- <body>
- <div id="allmap"></div>
- <div id="control">
- <button onclick = "polyline.enableEditing();polygon.enableEditing();">开启线、面编辑功能</button>
- <button onclick = "polyline.disableEditing();polygon.disableEditing();">关闭线、面编辑功能</button>
- </div>
- </body>
- </html>
- <script type="text/javascript">
- // 百度地图API功能
- var map = new BMap.Map("allmap");
- map.centerAndZoom(new BMap.Point(106.613922,29.53832), 15);
- map.enableScrollWheelZoom();
- var polyline = new BMap.Polyline([
- new BMap.Point(106.612539,29.529602),
- new BMap.Point(106.607975,29.53177),
- new BMap.Point(106.610311,29.525862),
- new BMap.Point(106.60776,29.524008)
- ], {strokeColor:"red", strokeWeight:2, strokeOpacity:0.5}); //创建折线
- map.addOverlay(polyline); //增加折线
- var polygon = new BMap.Polygon([
- new BMap.Point(106.607477,29.544864),
- new BMap.Point(106.613572,29.548324),
- new BMap.Point(106.619357,29.537421),
- new BMap.Point(106.612988,29.537079),
- new BMap.Point(106.615359,29.541143)
- ], {strokeColor:"blue", strokeWeight:2, strokeOpacity:0.5}); //创建多边形
- map.addOverlay(polygon); //增加多边形
- var ppoint = new BMap.Point(106.613087,29.540485);
- var result=BMapLib.GeoUtils.isPointInPolygon(ppoint, polygon);
- alert("数字图书馆是否在多边形范围内:"+result);
- var ppoint1 = new BMap.Point(106.614986,29.539876);
- var result1=BMapLib.GeoUtils.isPointInPolygon(ppoint1, polygon);
- alert("乒乓球馆是否在多边形范围内:"+result1+"米");
- var distance =map.getDistance(ppoint, ppoint1);
- alert("The Distance is"+distance);
- </script>
第二步,添加GeoUtils.js文件,代码如下:
- /**
- * @fileoverview GeoUtils类提供若干几何算法,用来帮助用户判断点与矩形、
- * 圆形、多边形线、多边形面的关系,并提供计算折线长度和多边形的面积的公式。
- * 主入口类是<a href="symbols/BMapLib.GeoUtils.html">GeoUtils</a>,
- * 基于Baidu Map API 1.2。
- *
- * @author Baidu Map Api Group
- * @version 1.2
- */
- //BMapLib.GeoUtils.degreeToRad(Number)
- //将度转化为弧度
- //BMapLib.GeoUtils.getDistance(Point, Point)
- //计算两点之间的距离,两点坐标必须为经纬度
- //BMapLib.GeoUtils.getPolygonArea(polygon)
- //计算多边形面或点数组构建图形的面积,注意:坐标类型只能是经纬度,且不适合计算自相交多边形的面积(封闭的面积)
- //BMapLib.GeoUtils.getPolylineDistance(polyline)
- //计算折线或者点数组的长度
- //BMapLib.GeoUtils.isPointInCircle(point, circle)
- //判断点是否在圆形内
- //BMapLib.GeoUtils.isPointInPolygon(point, polygon)
- //判断点是否多边形内
- //BMapLib.GeoUtils.isPointInRect(point, bounds)
- //判断点是否在矩形内
- //BMapLib.GeoUtils.isPointOnPolyline(point, polyline)
- //判断点是否在折线上
- //BMapLib.GeoUtils.radToDegree(Number)
- //将弧度转化为度
- /**
- * @namespace BMap的所有library类均放在BMapLib命名空间下
- */
- var BMapLib = window.BMapLib = BMapLib || {};
- (function () {
- /**
- * 地球半径
- */
- var EARTHRADIUS = 6370996.81;
- /**
- * @exports GeoUtils as BMapLib.GeoUtils
- */
- var GeoUtils =
- /**
- * GeoUtils类,静态类,勿需实例化即可使用
- * @class GeoUtils类的<b>入口</b>。
- * 该类提供的都是静态方法,勿需实例化即可使用。
- */
- BMapLib.GeoUtils = function () {
- }
- /**
- * 判断点是否在矩形内
- * @param {Point} point 点对象
- * @param {Bounds} bounds 矩形边界对象
- * @returns {Boolean} 点在矩形内返回true,否则返回false
- */
- GeoUtils.isPointInRect = function (point, bounds) {
- //检查类型是否正确
- if (!(point instanceof BMap.Point) ||
- !(bounds instanceof BMap.Bounds)) {
- return false;
- }
- var sw = bounds.getSouthWest(); //西南脚点
- var ne = bounds.getNorthEast(); //东北脚点
- return (point.lng >= sw.lng && point.lng <= ne.lng && point.lat >= sw.lat && point.lat <= ne.lat);
- }
- /**
- * 判断点是否在圆形内
- * @param {Point} point 点对象
- * @param {Circle} circle 圆形对象
- * @returns {Boolean} 点在圆形内返回true,否则返回false
- */
- GeoUtils.isPointInCircle = function (point, circle) {
- //检查类型是否正确
- if (!(point instanceof BMap.Point) ||
- !(circle instanceof BMap.Circle)) {
- return false;
- }
- //point与圆心距离小于圆形半径,则点在圆内,否则在圆外
- var c = circle.getCenter();
- var r = circle.getRadius();
- var dis = GeoUtils.getDistance(point, c);
- if (dis <= r) {
- return true;
- } else {
- return false;
- }
- }
- /**
- * 判断点是否在折线上
- * @param {Point} point 点对象
- * @param {Polyline} polyline 折线对象
- * @returns {Boolean} 点在折线上返回true,否则返回false
- */
- GeoUtils.isPointOnPolyline = function (point, polyline) {
- //检查类型
- if (!(point instanceof BMap.Point) ||
- !(polyline instanceof BMap.Polyline)) {
- return false;
- }
- //首先判断点是否在线的外包矩形内,如果在,则进一步判断,否则返回false
- var lineBounds = polyline.getBounds();
- if (!this.isPointInRect(point, lineBounds)) {
- return false;
- }
- //判断点是否在线段上,设点为Q,线段为P1P2 ,
- //判断点Q在该线段上的依据是:( Q - P1 ) × ( P2 - P1 ) = 0,且 Q 在以 P1,P2为对角顶点的矩形内
- var pts = polyline.getPath();
- for (var i = 0; i < pts.length - 1; i++) {
- var curPt = pts[i];
- var nextPt = pts[i + 1];
- //首先判断point是否在curPt和nextPt之间,即:此判断该点是否在该线段的外包矩形内
- if (point.lng >= Math.min(curPt.lng, nextPt.lng) && point.lng <= Math.max(curPt.lng, nextPt.lng) &&
- point.lat >= Math.min(curPt.lat, nextPt.lat) && point.lat <= Math.max(curPt.lat, nextPt.lat)) {
- //判断点是否在直线上公式
- var precision = (curPt.lng - point.lng) * (nextPt.lat - point.lat) - (nextPt.lng - point.lng) * (curPt.lat - point.lat);
- if (precision < 2e-10 && precision > -2e-10) {//实质判断是否接近0
- return true;
- }
- }
- }
- return false;
- }
- /**
- * 判断点是否多边形内
- * @param {Point} point 点对象
- * @param {Polyline} polygon 多边形对象
- * @returns {Boolean} 点在多边形内返回true,否则返回false
- */
- GeoUtils.isPointInPolygon = function (point, polygon) {
- //检查类型
- if (!(point instanceof BMap.Point) ||
- !(polygon instanceof BMap.Polygon)) {
- return false;
- }
- //首先判断点是否在多边形的外包矩形内,如果在,则进一步判断,否则返回false
- var polygonBounds = polygon.getBounds();
- if (!this.isPointInRect(point, polygonBounds)) {
- return false;
- }
- var pts = polygon.getPath(); //获取多边形点
- //下述代码来源:http://paulbourke.net/geometry/insidepoly/,进行了部分修改
- //基本思想是利用射线法,计算射线与多边形各边的交点,如果是偶数,则点在多边形外,否则
- //在多边形内。还会考虑一些特殊情况,如点在多边形顶点上,点在多边形边上等特殊情况。
- var N = pts.length;
- var boundOrVertex = true; //如果点位于多边形的顶点或边上,也算做点在多边形内,直接返回true
- var intersectCount = 0; //cross points count of x
- var precision = 2e-10; //浮点类型计算时候与0比较时候的容差
- var p1, p2; //neighbour bound vertices
- var p = point; //测试点
- p1 = pts[0]; //left vertex
- for (var i = 1; i <= N; ++i) {//check all rays
- if (p.equals(p1)) {
- return boundOrVertex; //p is an vertex
- }
- p2 = pts[i % N]; //right vertex
- if (p.lat < Math.min(p1.lat, p2.lat) || p.lat > Math.max(p1.lat, p2.lat)) {//ray is outside of our interests
- p1 = p2;
- continue; //next ray left point
- }
- if (p.lat > Math.min(p1.lat, p2.lat) && p.lat < Math.max(p1.lat, p2.lat)) {//ray is crossing over by the algorithm (common part of)
- if (p.lng <= Math.max(p1.lng, p2.lng)) {//x is before of ray
- if (p1.lat == p2.lat && p.lng >= Math.min(p1.lng, p2.lng)) {//overlies on a horizontal ray
- return boundOrVertex;
- }
- if (p1.lng == p2.lng) {//ray is vertical
- if (p1.lng == p.lng) {//overlies on a vertical ray
- return boundOrVertex;
- } else {//before ray
- ++intersectCount;
- }
- } else {//cross point on the left side
- var xinters = (p.lat - p1.lat) * (p2.lng - p1.lng) / (p2.lat - p1.lat) + p1.lng; //cross point of lng
- if (Math.abs(p.lng - xinters) < precision) {//overlies on a ray
- return boundOrVertex;
- }
- if (p.lng < xinters) {//before ray
- ++intersectCount;
- }
- }
- }
- } else {//special case when ray is crossing through the vertex
- if (p.lat == p2.lat && p.lng <= p2.lng) {//p crossing over p2
- var p3 = pts[(i + 1) % N]; //next vertex
- if (p.lat >= Math.min(p1.lat, p3.lat) && p.lat <= Math.max(p1.lat, p3.lat)) {//p.lat lies between p1.lat & p3.lat
- ++intersectCount;
- } else {
- intersectCount += 2;
- }
- }
- }
- p1 = p2; //next ray left point
- }
- if (intersectCount % 2 == 0) {//偶数在多边形外
- return false;
- } else { //奇数在多边形内
- return true;
- }
- }
- /**
- * 将度转化为弧度
- * @param {degree} Number 度
- * @returns {Number} 弧度
- */
- GeoUtils.degreeToRad = function (degree) {
- return Math.PI * degree / 180;
- }
- /**
- * 将弧度转化为度
- * @param {radian} Number 弧度
- * @returns {Number} 度
- */
- GeoUtils.radToDegree = function (rad) {
- return (180 * rad) / Math.PI;
- }
- /**
- * 将v值限定在a,b之间,纬度使用
- */
- function _getRange(v, a, b) {
- if (a != null) {
- v = Math.max(v, a);
- }
- if (b != null) {
- v = Math.min(v, b);
- }
- return v;
- }
- /**
- * 将v值限定在a,b之间,经度使用
- */
- function _getLoop(v, a, b) {
- while (v > b) {
- v -= b - a
- }
- while (v < a) {
- v += b - a
- }
- return v;
- }
- /**
- * 计算两点之间的距离,两点坐标必须为经纬度
- * @param {point1} Point 点对象
- * @param {point2} Point 点对象
- * @returns {Number} 两点之间距离,单位为米
- */
- GeoUtils.getDistance = function (point1, point2) {
- //判断类型
- if (!(point1 instanceof BMap.Point) ||
- !(point2 instanceof BMap.Point)) {
- return 0;
- }
- point1.lng = _getLoop(point1.lng, -180, 180);
- point1.lat = _getRange(point1.lat, -74, 74);
- point2.lng = _getLoop(point2.lng, -180, 180);
- point2.lat = _getRange(point2.lat, -74, 74);
- var x1, x2, y1, y2;
- x1 = GeoUtils.degreeToRad(point1.lng);
- y1 = GeoUtils.degreeToRad(point1.lat);
- x2 = GeoUtils.degreeToRad(point2.lng);
- y2 = GeoUtils.degreeToRad(point2.lat);
- return EARTHRADIUS * Math.acos((Math.sin(y1) * Math.sin(y2) + Math.cos(y1) * Math.cos(y2) * Math.cos(x2 - x1)));
- }
- /**
- * 计算折线或者点数组的长度
- * @param {Polyline|Array<Point>} polyline 折线对象或者点数组
- * @returns {Number} 折线或点数组对应的长度
- */
- GeoUtils.getPolylineDistance = function (polyline) {
- //检查类型
- if (polyline instanceof BMap.Polyline ||
- polyline instanceof Array) {
- //将polyline统一为数组
- var pts;
- if (polyline instanceof BMap.Polyline) {
- pts = polyline.getPath();
- } else {
- pts = polyline;
- }
- if (pts.length < 2) {//小于2个点,返回0
- return 0;
- }
- //遍历所有线段将其相加,计算整条线段的长度
- var totalDis = 0;
- for (var i = 0; i < pts.length - 1; i++) {
- var curPt = pts[i];
- var nextPt = pts[i + 1]
- var dis = GeoUtils.getDistance(curPt, nextPt);
- totalDis += dis;
- }
- return totalDis;
- } else {
- return 0;
- }
- }
- /**
- * 计算多边形面或点数组构建图形的面积,注意:坐标类型只能是经纬
- 度,且不适合计算自相交多边形的面积
- * @param {Polygon|Array<Point>} polygon 多边形面对象或者点数
- 组
- * @returns {Number} 多边形面或点数组构成图形的面积
- */
- GeoUtils.getPolygonArea = function (polygon) {
- //检查类型
- if (!(polygon instanceof BMap.Polygon) &&
- !(polygon instanceof Array)) {
- return 0;
- }
- var pts;
- if (polygon instanceof BMap.Polygon) {
- pts = polygon.getPath();
- } else {
- pts = polygon;
- }
- if (pts.length < 3) {//小于3个顶点,不能构建面
- return 0;
- }
- var totalArea = 0; //初始化总面积
- var LowX = 0.0;
- var LowY = 0.0;
- var MiddleX = 0.0;
- var MiddleY = 0.0;
- var HighX = 0.0;
- var HighY = 0.0;
- var AM = 0.0;
- var BM = 0.0;
- var CM = 0.0;
- var AL = 0.0;
- var BL = 0.0;
- var CL = 0.0;
- var AH = 0.0;
- var BH = 0.0;
- var CH = 0.0;
- var CoefficientL = 0.0;
- var CoefficientH = 0.0;
- var ALtangent = 0.0;
- var BLtangent = 0.0;
- var CLtangent = 0.0;
- var AHtangent = 0.0;
- var BHtangent = 0.0;
- var CHtangent = 0.0;
- var ANormalLine = 0.0;
- var BNormalLine = 0.0;
- var CNormalLine = 0.0;
- var OrientationValue = 0.0;
- var AngleCos = 0.0;
- var Sum1 = 0.0;
- var Sum2 = 0.0;
- var Count2 = 0;
- var Count1 = 0;
- var Sum = 0.0;
- var Radius = EARTHRADIUS; //6378137.0,WGS84椭球半径
- var Count = pts.length;
- for (var i = 0; i < Count; i++) {
- if (i == 0) {
- LowX = pts[Count - 1].lng * Math.PI / 180;
- LowY = pts[Count - 1].lat * Math.PI / 180;
- MiddleX = pts[0].lng * Math.PI / 180;
- MiddleY = pts[0].lat * Math.PI / 180;
- HighX = pts[1].lng * Math.PI / 180;
- HighY = pts[1].lat * Math.PI / 180;
- }
- else if (i == Count - 1) {
- LowX = pts[Count - 2].lng * Math.PI / 180;
- LowY = pts[Count - 2].lat * Math.PI / 180;
- MiddleX = pts[Count - 1].lng * Math.PI / 180;
- MiddleY = pts[Count - 1].lat * Math.PI / 180;
- HighX = pts[0].lng * Math.PI / 180;
- HighY = pts[0].lat * Math.PI / 180;
- }
- else {
- LowX = pts[i - 1].lng * Math.PI / 180;
- LowY = pts[i - 1].lat * Math.PI / 180;
- MiddleX = pts[i].lng * Math.PI / 180;
- MiddleY = pts[i].lat * Math.PI / 180;
- HighX = pts[i + 1].lng * Math.PI / 180;
- HighY = pts[i + 1].lat * Math.PI / 180;
- }
- AM = Math.cos(MiddleY) * Math.cos(MiddleX);
- BM = Math.cos(MiddleY) * Math.sin(MiddleX);
- CM = Math.sin(MiddleY);
- AL = Math.cos(LowY) * Math.cos(LowX);
- BL = Math.cos(LowY) * Math.sin(LowX);
- CL = Math.sin(LowY);
- AH = Math.cos(HighY) * Math.cos(HighX);
- BH = Math.cos(HighY) * Math.sin(HighX);
- CH = Math.sin(HighY);
- CoefficientL = (AM * AM + BM * BM + CM * CM) / (AM * AL + BM * BL + CM * CL);
- CoefficientH = (AM * AM + BM * BM + CM * CM) / (AM * AH + BM * BH + CM * CH);
- ALtangent = CoefficientL * AL - AM;
- BLtangent = CoefficientL * BL - BM;
- CLtangent = CoefficientL * CL - CM;
- AHtangent = CoefficientH * AH - AM;
- BHtangent = CoefficientH * BH - BM;
- CHtangent = CoefficientH * CH - CM;
- AngleCos = (AHtangent * ALtangent + BHtangent * BLtangent + CHtangent * CLtangent) / (Math.sqrt(AHtangent * AHtangent + BHtangent * BHtangent + CHtangent * CHtangent) * Math.sqrt(ALtangent * ALtangent + BLtangent * BLtangent + CLtangent * CLtangent));
- AngleCos = Math.acos(AngleCos);
- ANormalLine = BHtangent * CLtangent - CHtangent * BLtangent;
- BNormalLine = 0 - (AHtangent * CLtangent - CHtangent * ALtangent);
- CNormalLine = AHtangent * BLtangent - BHtangent * ALtangent;
- if (AM != 0)
- OrientationValue = ANormalLine / AM;
- else if (BM != 0)
- OrientationValue = BNormalLine / BM;
- else
- OrientationValue = CNormalLine / CM;
- if (OrientationValue > 0) {
- Sum1 += AngleCos;
- Count1++;
- }
- else {
- Sum2 += AngleCos;
- Count2++;
- }
- }
- var tempSum1, tempSum2;
- tempSum1 = Sum1 + (2 * Math.PI * Count2 - Sum2);
- tempSum2 = (2 * Math.PI * Count1 - Sum1) + Sum2;
- if (Sum1 > Sum2) {
- if ((tempSum1 - (Count - 2) * Math.PI) < 1)
- Sum = tempSum1;
- else
- Sum = tempSum2;
- }
- else {
- if ((tempSum2 - (Count - 2) * Math.PI) < 1)
- Sum = tempSum2;
- else
- Sum = tempSum1;
- }
- totalArea = (Sum - (Count - 2) * Math.PI) * Radius * Radius;
- return totalArea; //返回总面积
- }
利用百度API(JavaScript 版)实现在地图上绘制任一多边形,并判断给定经纬度是否在多边形范围内。以及两点间的测距功能的更多相关文章
- 记录开发基于百度地图API实现在地图上绘制轨迹并拾取轨迹对应经纬度的工具说明
前言: 最近一直在做数据可视化方面的工作,其中平面可视化没什么难度,毕竟已经有很多成熟的可供使用的框架,比如百度的echart.js,highcharts.js等.还有就是3D可视化了,整体来说难度也 ...
- 利用百度API Store接口进行火车票查询
火车票查询 项目源码下载链接: Github:https://github.com/VincentWYJ/TrainTicketQuery 博客文件:http://files.cnblogs.com/ ...
- 在谷歌地图上绘制行政区域轮廓【结合高德地图的API】
实现思路: 1.利用高德地图行政区域API获得坐标列表 2.将坐标列表绘制在谷歌地图上[因为高德地图和国内的谷歌地图都是采用GCJ02坐标系,所有误差很小,可以不进行坐标误差转换] 注意点: 1.用百 ...
- ArcGIS API for Silverlight 实现修改地图上的工程点位置
原文:ArcGIS API for Silverlight 实现修改地图上的工程点位置 #region 处理工程点点击编辑相关事件 public Graphic editgraphics = null ...
- iOS开发之在地图上绘制出你运行的轨迹
首先我们看下如何在地图上绘制曲线.在Map Kit中提供了一个叫MKPolyline的类,我们可以利用它来绘制曲线,先看个简单的例子. 使用下面代码从一个文件中读取出经纬度,然后创建一个路径:MKPo ...
- R语言绘图:在地图上绘制热力图
使用ggplot2在地图上绘制热力图 ######*****绘制热力图代码*****####### interval <- seq(0, 150000, 25000)[-2] #设置价格区间 n ...
- R语言绘图:在地图上绘制散点图
使用ggplot2在地图上绘制散点图 ######*****绘制散点图代码*****####### options(baidumap.key = '**************') #设置密钥 bei ...
- echarts在地图上绘制散点图(任意点)
项目需求:在省份地图上绘制散点图,散点位置不一定是哪个城市或哪个区县,即任意点 通过查询官网文档,找到一个与需求类似的Demo:https://www.echartsjs.com/gallery/ed ...
- ArcGIS api for javascript——查找任务-在地图上查找要素
描述 本例展示了如何使用查找任务搜索数据.本例在地图上用图表显示结果并用DojoX的grid格式化结果为表格样式. FindTask构造函数需要一个ArcGIS Server地图服务的URL.本例使用 ...
随机推荐
- JVM运行时数据区和垃圾回收机制
最近参考各种资料,尤其是<深入理解Java虚拟机 JVM高级特性和最佳实践>,大牛之作.把最近学习的Java虚拟机组成和垃圾回收机制总结一下. 你不会的都是新知识,学无止境,每天进步一点点 ...
- EasyPusher/EasyDarwin支持H.265 RTSP/RTP直播推流与分发播放
前言描述 随着大屏时代和高清时代的到来,人们已经不再满足于VGA.CIF这种小分辨率了,取而代之的是720P.1080P.4K级的视频传输,虽然我们国家的基础带宽一直在上升,但普遍情况下,传输高清视频 ...
- Echart--百度地图(散点图)
参考:http://blog.csdn.net/xieweikun7/article/details/52766676 1.首先,下载嘛 Echarts http://echarts.baidu.co ...
- 快速生成树RTSP
Note: 数据分组:
- keras channels_last、preprocess_input、全连接层Dense、SGD优化器、模型及编译
channels_last 和 channels_first keras中 channels_last 和 channels_first 用来设定数据的维度顺序(image_data_format). ...
- xshell连接及优化
xshell 连接 问题:当你的xshell与服务器连接不上时 1:可先排查道路通不通 正常: 不正常: 1:查看服务器ip正不正确 2:vmware 编辑-虚拟网络编辑器 3:windows服务 ...
- scrapy与scrapyd安装
Scrapy是用python编写的爬虫程序. Scrapyd是一个部署与运行scrapy爬虫的应用,提供JSON API的调用方式来部署与控制爬虫 . 本文验证在fedora与centos是安装成功. ...
- HihoCoder 1044 垃圾清理 (优化:状态压缩)
状态压缩·一 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 小Hi和小Ho在兑换到了喜欢的奖品之后,便继续起了他们的美国之行,思来想去,他们决定乘坐火车前往下一座城市— ...
- flask第十八篇——模板【2】
请关注公众号:自动化测试实战 上一节我们介绍了模板的基本使用方法,现在我们想一个问题,如果把index.html放到template文件夹下面的文件夹该怎么办呢?其实很容易,当文件夹结构如下图所示时: ...
- php中strstr、strchr、strrchr、substr、stristr
一.strstr 和 strcchr的区别 strstr 显示第一次找到,要查找的字符串,以及后面的字符串. strrchr 显示最后一次找到,要查找的字符串,以及后面的字符串. 二.strstr ...