import numpy as np

# Numpy数组操作
print('========访问列表元素, 切片,赋值===========')
arr = np.array([2., 6., 5., 5.])
print(arr[:3])
print(arr[3])
arr[0] = 5.
print(arr)
print('========数组唯一性元素===========')
print(np.unique(arr))
print('========数组排序,排序索引===========')
print(np.sort(arr))
print(np.argsort(arr))
print('========将数组乱序重排===========')
np.random.shuffle(arr)
print(arr)
print('========数组相等性比较===========')
print(np.array_equal(arr, np.array([1., 3., 2.])))
print('========二维数组(矩阵)的元素访问===========')
matrix = np.array([[4., 5., 6.], [2, 3, 6]], float)
print(matrix)
print(matrix[0, 0])
print(matrix[0, 2])
print('========对数组的各维进行切片操作===========')
print(matrix[1:2,2:3])
print(matrix[1, :])
print(matrix[:, 2])
print(matrix[-1:, -2:])
print('========将多维数组拉平为一维数组===========')
print(matrix.flatten())
print('========获取数组大小信息===========')
print(matrix.shape)
print('========获取数组元素的类型===========')
print(matrix.dtype)
print('========数组的数据类型转换===========')
int_arr = matrix.astype(np.int32)
print(int_arr)
print(int_arr.dtype)
print('========获取数组第一维的长度===========')
print(len(matrix))
print('========判断数组是否包含元素===========')
print(2 in matrix)
print(0 in matrix)
print('========调整数组维度===========')
arr = np.array(range(8), float)
print(arr)
re_arr = arr.reshape((4, 2))
print(re_arr)
print('========矩阵的转置运算===========')
print(re_arr.transpose())
print('========使用数组的T属性实现转置===========')
matrix = np.arange(15).reshape(3, 5)
print(matrix)
print(matrix.T)
print('========使用newaxis调整元素位置,增加维度===========')
arr = np.array([14, 32, 13], float)
print(arr)
print(arr[:, np.newaxis])
print(arr[:, np.newaxis].shape)
print(arr[np.newaxis, :])
print(arr[np.newaxis, :].shape)
print('========数组的连接===========')
arr1 = np.array([10, 22], float)
arr2 = np.array([31, 43, 54, 61], float)
arr3 = np.array([71, 82, 29], float)
print(np.concatenate((arr1, arr2, arr3)))
print('========数组连接时,指定具体的条轴===========')
arr1 = np.array([[11, 12], [32, 42]], float)
arr2 = np.array([[54, 26], [27, 28]], float)
print(np.concatenate((arr1, arr2)))
print(np.concatenate((arr1, arr2), axis=0))
print(np.concatenate((arr1, arr2), axis=1))
print('========二进制字符串和数组之间的转换,fromstring已升级为frombuffer===========')
arr = np.array([10, 20, 30], float)
str = arr.tostring()
print(str)
print(np.frombuffer(str))
PS C:\test> & C:/Python37/python.exe c:/test/ml.py
========访问列表元素, 切片,赋值===========
[. . .]
5.0
[. . . .]
========数组唯一性元素===========
[. .]
========数组排序,排序索引===========
[. . . .]
[   ]
========将数组乱序重排===========
[. . . .]
========数组相等性比较===========
False
========二维数组(矩阵)的元素访问===========
[[. . .]
 [. . .]]
4.0
6.0
========对数组的各维进行切片操作===========
[[.]]
[. . .]
[. .]
[[. .]]
========将多维数组拉平为一维数组===========
[. . . . . .]
========获取数组大小信息===========
(, )
========获取数组元素的类型===========
float64
========数组的数据类型转换===========
[[  ]
 [  ]]
int32
========获取数组第一维的长度===========

========判断数组是否包含元素===========
True
False
========调整数组维度===========
[. . . . . . . .]
[[. .]
 [. .]
 [. .]
 [. .]]
========矩阵的转置运算===========
[[. . . .]
 [. . . .]]
========使用数组的T属性实现转置===========
[[         ]
 [         ]
 [    ]]
[[    ]
 [    ]
 [    ]
 [    ]
 [    ]]
========使用newaxis调整元素位置,增加维度===========
[. . .]
[[.]
 [.]
 [.]]
(, )
[[. . .]]
(, )
========数组的连接===========
[. . . . . . . . .]
========数组连接时,指定具体的条轴===========
[[. .]
 [. .]
 [. .]
 [. .]]
[[. .]
 [. .]
 [. .]
 [. .]]
[[. . . .]
 [. . . .]]
========二进制字符串和数组之间的转换,fromstring已升级为frombuffer===========
b'\x00\x00\x00\x00\x00\x00$@\x00\x00\x00\x00\x00\x004@\x00\x00\x00\x00\x00\x00>@'
[. . .]

python---Numpy模块中数组运算的常用代码示例的更多相关文章

  1. python基础:os模块中关于文件/目录常用的函数使用方法

    Python是跨平台的语言,也即是说同样的源代码在不同的操作系统不需要修改就可以同样实现 因此Python的作者就倒腾了OS模块这么一个玩意儿出来,有了OS模块,我们不需要关心什么操作系统下使用什么模 ...

  2. python numpy模块

    目录 numpy模块 一维数组 二维数组(用的最多的) 获取多维数组的行和列 多维数组的索引 高级功能 多维数组的元素的替换 通过函数方法创建多维数组 矩阵的运算 点乘和转置(了解) 点乘必须 m*n ...

  3. Python3:numpy模块中的argsort()函数

    Python3:numpy模块中的argsort()函数   argsort函数是Numpy模块中的函数: >>> import numpy >>> help(nu ...

  4. os模块中关于文件/目录常用的函数使用方法

    os模块中关于文件/目录常用的函数使用方法 函数名 使用方法 getcwd() 返回当前工作目录 chdir(path) 改变工作目录 listdir(path='.') 列举指定目录中的文件名('. ...

  5. 18 os/os.path模块中关于文件/目录常用的函数使用方法 (转)

    os模块中关于文件/目录常用的函数使用方法 函数名 使用方法 getcwd() 返回当前工作目录 chdir(path) 改变工作目录 listdir(path='.') 列举指定目录中的文件名('. ...

  6. numpy库中数组的数据类型

    numpy库中数组的数据类型 dtype是一个特殊的对象,它含有ndarray将一块内存解释为特殊数据类型所需要的信息 指定数据类型创建数组 >>> import numpy as ...

  7. 修改python import模块中的变量

    可以直接通过 模块名.变量名=xx 的方式修改模块中的全局变量,测试代码如下 模块:test_model.py x = 111 def inc_x(): global x x = x + 1 测试脚本 ...

  8. (转)轻松掌握shell编程中数组的常见用法及示例

    缘起:在老男孩进行linux培训shell编程教学中,发现不少水平不错的网友及同学对数组仍然很迷糊,下面就给大家分享下数组的用法小例子,希望能给大家一点帮助.其实SHELL的数组很简单,好用.我们学习 ...

  9. Lambda表达式常用代码示例

    Lambda表达式常用代码示例 2017-10-24 目录 1 Lambda表达式是什么2 Lambda表达式语法3 函数式接口是什么  3.1 常用函数式接口4 Lambdas和Streams结合使 ...

随机推荐

  1. 获取web.xml配置文件中的初始化值

    TestServletConfig.java package com.huawei.config; import java.io.IOException;import java.util.Enumer ...

  2. Python实现阿里云短信推送

    本篇文章是使用Python的Web框架Django提供发送短信接口供前端调用,Python版本2.7 阿里云入驻.申请短信服务.创建应用和模板等步骤请参考:阿里云短信服务入门 1.下载sdk 阿里云短 ...

  3. sh 脚本

    more log.log| awk '{if($1>"15:10:54.851" && length($1)==12){print $0}}'

  4. java算法 第七届 蓝桥杯B组(题+答案) 8.四平方和

    8.四平方和  (程序设计) 四平方和定理,又称为拉格朗日定理:每个正整数都可以表示为至多4个正整数的平方和.如果把0包括进去,就正好可以表示为4个数的平方和. 比如:5 = 0^2 + 0^2 + ...

  5. 【bzoj2480】Spoj3105 Mod

    2480: Spoj3105 Mod Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 557  Solved: 210[Submit][Status][ ...

  6. 从Oracle数据库中查询与某一时间点最接近的记录

    select * from data_taskregionschedule WHERE regioncode='HYL' and updatetime-to_date('2018-05-15','yy ...

  7. 小程序本地资源无法通过 css 获取

    background-image:可以使用网络图片,或者 base64,或者使用<image/>标签

  8. 621. Task Scheduler CPU任务间隔分配器

    [抄题]: Given a char array representing tasks CPU need to do. It contains capital letters A to Z where ...

  9. system存储说明和制作os模板时的注意事项

    1.通过ISO制作模板时,安装机器后,使用非持久化磁盘安装后,无法从硬盘引导:使用持久化磁盘可以.2.system 存储,当opennebula 初次部署时,会生成0(system),1(image) ...

  10. 电商项目面试题 及mysql面试题 太难没啥用

    需要按照功能点把系统拆分,拆分成独立的功能.单独为某一个节点添加服务器.需要系统之间配合才能完成整个业务逻辑.叫做分布式.集群:同一个工程部署到多台服务器上.优点:1.把模块拆分,使用接口通信,降低模 ...