storm(一) window机制
Watermark作用
在解释storm的window之前先说明一下watermark原理。
Watermark中文翻译为水位线更为恰当。
顺序的数据从源头开始发送到到操作,中间过程肯定会出现数据乱序情况,比如网络原因,数据并发发送等。如何区分乱序的数据和正常的数据,就引申出了watermark。
Watermark是每一个时间窗口的下限,意思是说当watermark大于了窗口截止时间,那么该窗口就应该被关闭。而watermar也会随着时间窗口的变化不断更新自己。
参考下图,列举了几个关键的术语以及它们的定位。
watermark可以理解为自定义的可以代表整个流的时间点,并且会不断更新。一般情况,当watermark-lastWindowEndTs>slidingInterval,那么就会触发一个新的窗口。
lag可以理解为自定义的最大数据延迟时间范围,由于实时计算对实时性的需求,而数据在网络波动等情况下不是按顺序到达计算,所以lag的出现就是为了解决那些能到达的数据但是时间比正常数据晚的情况,当该数据的时间小于watermark-lag。那么就判定该数据为延迟数据,可以选择直接丢弃或者其他自定义操作。
概述
总体来看,抽象 tuple和watermark为Event,这样可以方便的把watermark注入到tuple。做统一化处理。
有5大组件组成
·WindowBoltExecutor
·WindowManager
·WaterMarkEventGenerator
·Trigger
·Eviction
WindowBoltExecutor负责整个window的初始化,参数配置和封装,
WindowManager负责存取数据,包括所有的数据操作
WaterMarkEventGenerator负责watermark的生成和维护
Trigger负责时间窗口的判断,决定是否触发窗口事件
Eviction负责数据状态的判断,得到数据是哪一种状态(KEEP,STOP,PROCESS,EXPIRED)
Watermark算法
所有流数据不一起处理,而是分开计算各个流最大时间,再根据最大时间集合计算出最小时间,这个时间就是watermark的时间。
这样做的目的是为了防止不同流传输的延迟不同,比方说,有2个上游A,B同时发数据,A由于网络较好,发送的数据比B快,导致了A的时间戳比B的大,如果watermark采用了全局最大值,那么时间窗口就会被提早关闭,而B发来的数据会被排除在该时间窗口
主逻辑流程
重要参数
英文 |
解释 |
windowLength |
窗口大小 |
slidingInterval |
窗口滑动步长 |
windowEndTs |
窗口截止时间 |
watermark |
水位线,判断是否关闭时间窗口的标志 |
maxLag |
时间窗口的最大延迟时间(网络等问题造成) |
eventTimestamp |
数据时间,每个数据都有自带的时间戳 |
数据4种状态
状态 |
解释 |
KEEP |
当前窗口不处理。是未来窗口的数据 |
STOP |
停止处理,数据时间戳比窗口截止时间+lag还大,说明不属于该窗口,之后的数据也不属于 |
PROCESS |
当前窗口内的数据 |
EXPIRE |
|
storm(一) window机制的更多相关文章
- 理解storm的ACKER机制原理
一.简介: storm中有一个很重要的特性: 保证发出的每个tuple都会被完整处理.一个tuple被完全处理的意思是: 这个tuple以及由这个tuple所产生的所有的子tuple都被成 ...
- Storm的ack机制在项目应用中的坑
正在学习storm的大兄弟们,我又来传道授业解惑了,是不是觉得自己会用ack了.好吧,那就让我开始啪啪打你们脸吧. 先说一下ACK机制: 为了保证数据能正确的被处理, 对于spout产生的每一个tup ...
- 【原】Storm 消息处理保障机制
Storm入门教程 1. Storm基础 Storm Storm主要特点 Storm基本概念 Storm调度器 Storm配置 Guaranteeing Message Processing(消息处理 ...
- storm的并发机制
storm的并发机制 storm计算支持在多台机器上水平扩容,通过将计算切分为多个独立的tasks在集群上并发执行来实现. 一个task可以简单地理解:在集群某节点上运行的一个spout或者bolt实 ...
- Storm(三)Storm的原理机制
一.Storm的数据分发策略 1. Shuffle Grouping 随机分组,随机派发stream里面的tuple,保证每个bolt task接收到的tuple数目大致相同. 轮询,平均分配 2. ...
- Storm消息容错机制(ack-fail机制)
storm消息容错机制(ack-fail) 1.介绍 在storm中,可靠的信息处理机制是从spout开始的. 一个提供了可靠的处理机制的spout需要记录他发射出去的tuple,当下游bolt处理t ...
- storm的acker机制
一.简介: storm中有一个很重要的特性: 保证发出的每个tuple都会被完整处理.一个tuple被完全处理的意思是: 这个tuple以及由这个tuple所产生的所有的子tuple都被成功处理.如果 ...
- storm(二) 事务机制
前言 为了保证tuple的强有序和exactly-once语义,storm提供了事务机制,为每个tuple提供一个id 设计方法1 为每个tuple设置一个事务id,在数据库保存事务id和当前处理的i ...
- Android全面解析之Window机制
前言 你好! 我是一只修仙的猿,欢迎阅读我的文章. Window,读者可能更多的认识是windows系统的窗口.在windows系统上,我们可以多个窗口同时运行,每个窗口代表着一个应用程序.但在安卓上 ...
随机推荐
- Linux Shell 文本处理工具集锦--Awk―sed―cut(row-based, column-based),find、grep、xargs、sort、uniq、tr、cut、paste、wc
本文将介绍Linux下使用Shell处理文本时最常用的工具:find.grep.xargs.sort.uniq.tr.cut.paste.wc.sed.awk:提供的例子和参数都是最常用和最为实用的: ...
- 前端开发 - CSS - 下
CSS: 12.display 13.浮动效果 14.浮动特性 15.浮动产生的问题和解决方法 16.float京东导航栏 17.position 18.z-index 19.京东案例 12.disp ...
- EasyUI 的常见标签
1. Resizable 属性 原理: 页面加载完毕后,EasyUI主文件会扫描页面上的每个标签,判断这些标签的class值是否以"easyui-"开头, 如果是,则拿到之后的部分 ...
- Storm简介及使用
一.Storm概述 网址:http://storm.apache.org/ Apache Storm是一个免费的开源分布式实时计算系统.Storm可以轻松可靠地处理无限数据流,实现Hadoop对批处理 ...
- 使用arc进行code review
https://secure.phabricator.com/book/phabricator/article/arcanist_quick_start/ 使用流程: 流程 本部分来自arcanist ...
- Spark应用提交
在 Spark 的 bin 目录中的 spark-submit 脚本用与在集群上启动应用程序.它可以通过一个统一的接口使用所有 Spark 支持的 Cluster Manager,所以您不需要专门的为 ...
- MySQL高可用架构之MHA(转)
简介: MHA(Master High Availability)目前在MySQL高可用方面是一个相对成熟的解决方案,它由日本DeNA公司youshimaton(现就职于Facebook公司)开发,是 ...
- python16_day20【Django_继续抽屉项目】
一.djangoAdmin和表结构 1.项目名称 python manage startapp web # 前端页面 python manage startapp repository # 只是数 ...
- spark[源码]-sparkContext详解[一]
spark简述 sparkContext在Spark应用程序的执行过程中起着主导作用,它负责与程序和spark集群进行交互,包括申请集群资源.创建RDD.accumulators及广播变量等.spar ...
- presto 0.166安装部署
系统:linux java:jdk 8,64-bit Connector:hive 分布式,node1-3 node1:Coordinator . Discovery service node2-3: ...