空间 512M  时限2s

【题目描述】

有n个大于1的正整数a1,a2,…,an,我们知道斐波那契数列的递推式是f(i)=f(i-1)+f(i-2),现在我们修改这个递推式变为f(i)=f(i-1)+f(i-2)+r(i-1),其中r(x)为a1,a2,…,an中为x的约数的个数。现在要求f(m) mod 19940417的值。注:初值f(1)=1,f(2)=1

输入格式:

第一行两个数n,m。

接下来一行n个正整数a1,a2,…,an。

输出格式:

输出一行仅一个数,f(m) mod 19940417的值。

样例输入:

3 7

2 2 3

样例输出:

33

数据范围:

30%的数据n<=1000,m<=1000

另外20%的数据 n=0,m<=109

100%的数据n<=100000,m<=109,2<=ai<=109

题解:

  对于100%的数据,我们可以先考虑把fib[i]=fib[i-1]+fib[i-2] 的答案先用矩阵快速幂跑出来。然后依次输入ai,来看每个ai对fib[m]的影响,因为fib(i)=fib(i-1)+fib(i-2)+r(i-1),所以每一个ai,在它k倍(k*ai<=M)的地方的斐波那契值都会产生+1的影响。我们考虑如果对于斐波那契数列的第i项我们对它加一个1并且继续进行后面的递推的话,那么第j项(j>i)的值就是fib[j]+fib[j-i+1]。所以实际上我们可以对于每个ai分别处理,对于ai,它会给最后的答案贡献fib[m mod ai]+fib[ai+(m mod ai)]+…保证[]内的值小于等于m。

  但如果只是一个一个让答案加上fib[k*ai+(m%ai)],还是会超时,肯定要用到矩阵快速幂来优化,假设我们让B为表示fib[m%ai]的矩阵,那么f[k*ai+(m%ai)]可以表示为B*A^k*ai,然后解决的就是SUM = (A + A^2 + A^3 + ... + A^B)%C的问题(讲解)。

 #include <cstdio>
#include <algorithm>
using namespace std;
typedef long long LL;
const int mod=;
struct mat {
int a,b,c,d;
}ZR,E,F,Ans;
int n,m;
mat pre[],pw[];
mat operator*(mat X,mat Y) {
mat Z;
Z.a=((LL)X.a*Y.a+(LL)X.b*Y.c)%mod;
Z.b=((LL)X.a*Y.b+(LL)X.b*Y.d)%mod;
Z.c=((LL)X.c*Y.a+(LL)X.d*Y.c)%mod;
Z.d=((LL)X.c*Y.b+(LL)X.d*Y.d)%mod;
return Z;
}
mat operator+(mat X,mat Y) {
mat Z;
Z.a=(X.a+Y.a)%mod;
Z.b=(X.b+Y.b)%mod;
Z.c=(X.c+Y.c)%mod;
Z.d=(X.d+Y.d)%mod;
return Z;
}
mat fpm(mat a,int b) {
mat w=E;
while(b){
if(b&) w=w*a;
a=a*a;
b>>=;
}
return w;
}
mat vsum(int n){
if(n==) return ZR;
if(n==) return E;
int m=,t=;
while(m<=n) m<<=,++t;
m>>=,--t;
return pre[t]+pw[t]*vsum(n-m);
}
void prepare(mat A){//A矩阵是系数矩阵的ai次方
for(int i=;i<=;++i){
if(i==) pw[i]=A;
else pw[i]=pw[i-]*pw[i-];
if(i==) pre[i]=E;//单位矩阵
else pre[i]=pre[i-]*(E+pw[i-]);
}
}
mat solve(int d) {
if(d>=m) return ZR;
int k=(m-)/d;
prepare(fpm(F,d));
return fpm(F,m--k*d)*vsum(k);
}
int main() {
// freopen("fib.in" , "r", stdin);
// freopen("fib.out", "w", stdout);
scanf("%d%d",&n,&m);
if(m<=){
printf("1\n");
return ;
}
E.a=E.d=;
F.a=F.b=F.c=;
Ans=Ans+fpm(F,m-);//先算出纯 fib序列 for(int i=;i<=n;++i){//
int x;
scanf("%d",&x);
Ans=Ans+solve(x);
}
printf("%d\n",Ans.a);
}

bzoj 3657 斐波那契数列(fib.cpp/pas/c/in/out)的更多相关文章

  1. 辗转相除法求最大公约数(gcd)的斐波那契数列(fib)最坏时间复杂度的证明

    下载地址:http://pan.baidu.com/s/1jIt6UlK

  2. Codeforces 446-C DZY Loves Fibonacci Numbers 同余 线段树 斐波那契数列

    C. DZY Loves Fibonacci Numbers time limit per test 4 seconds memory limit per test 256 megabytes inp ...

  3. Android NDK入门实例 计算斐波那契数列一生成jni头文件

    最近要用到Android NDK,调用本地代码.就学了下Android NDK,顺便与大家分享.下面以一个具体的实例计算斐波那契数列,说明如何利用Android NDK,调用本地代码.以及比较本地代码 ...

  4. HDU3977(斐波那契数列模n的循环节长度)

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=3977 题意:求斐波那契数列模p的循环节长度,注意p最大是2*10^9,但是它的素因子小于10^6. 分析过 ...

  5. [NEUQ-OJ] 1012 SZ斐波拉契数列

    一道水题,让我看清基础我的基础是多么薄弱. 递归,数组清零,数组名/变量名重复层出不穷...路漫漫啊.......... http://ncc.neuq.edu.cn/oj/problem.php?i ...

  6. Java与算法之(3) - 斐波那契数列

    斐波那契数列问题:如果一对兔子每月能生1对小兔子,而每对小兔在它出生后的第三个月里,又能开始生1对小兔子,假定在不发生死亡的情况下,由一对初生的兔子开始,1年后能繁殖出多少对兔子? 首先手工计算来总结 ...

  7. 斐波拉契数列(Fibonacci)--用生成器生成数列

    斐波那契数列(Fibonacci sequence),又称黄金分割数列.因数学家列昂纳多·斐波那契(Leonardoda Fibonacci)以兔子繁殖为例子而引入,故又称为"兔子数列&qu ...

  8. 算法之路(三)----查找斐波纳契数列中第 N 个数

    算法题目 查找斐波纳契数列中第 N 个数. 所谓的斐波纳契数列是指: * 前2个数是 0 和 1 . * 第 i 个数是第 i-1 个数和第i-2 个数的和. 斐波纳契数列的前10个数字是: 0, 1 ...

  9. Python3 ——斐波那契数列(经典)

    刚刚学习了 斐波那契数列,整理一下思路,写个博文给未来的学弟学妹参考一下,希望能够帮助到他们 永远爱你们的 ----新宝宝 经历过简单的学习之后,写出一个比较简单的代码,斐波那契数列:具体程序如下: ...

随机推荐

  1. 160615、Spring3 MVC 拦截器拦截不到的问题

    昨天项目组有个成员使用拦截器的时候发现不起作用,后来发现了原因,在这里跟大家分享一下(主要是冲突了).分享的是一位网友写的文章,他总结的很好. com.zk.interceptors.MyInterc ...

  2. 160614、Eclipse下JRebel6.2.0热部署插件安装、破解及配置

    标签: 这两天在做后台管理系统,前端框架用Bootstrap,后端用SpringMVC+Velocity.在开发过程中,经常需要对界面进行微调,调整传参等,每次更改一次java代码,就得重新部署一次, ...

  3. vscode编辑器配置C语言编译运行环境

    1.安装C/C++插件 2.安装编译环境,这里选择MinGW(http://mingw.org/ ) 选择一个安装目录,如:E:\workspace\MinGW mingw32-gcc开头的(包括了m ...

  4. 【Python Programe】使用Python发送语音验证

    使用Python向手机发送语音验证码,需要工具有: virtualenv 创建独立运行环境 Twilio 帐号去调用相应的API Twilio 的python库,5.7.0版本 1.使用 virtua ...

  5. java generic super, extend

    //Apple Orange 都继承自Fruit类,同时Jonathan是Apple的子类    List<? extends Fruit> list = new ArrayList< ...

  6. 如何使用 libtorch 实现 AlexNet 网络?

    如何使用 libtorch 实现 AlexNet 网络? 按照图片上流程写即可.输入的图片大小必须 227x227 3 通道彩色图片 // Define a new Module. struct Ne ...

  7. C++的全部目标就是最优化资源的利用,以人付出更多为代价。Python刚好是另一个极端(Bjarne就说,一个人至少应该掌握两种计算机语言)

    说 C++ 反人类,是如果把 C++ 看作人(程序员)和资源(电子系统)的桥梁,他的全部目标就是最优化资源的利用,以人付出更多为代价.Python刚好是另一个极端.做好两个一起学.Bjarne就说,一 ...

  8. 重点:怎样正确的使用QThread类(很多详细例子的对比,注意:QThread 中所有实现的函数是被创建它的线程来调用的,不是在线程中)good

    背景描述: 以前,继承 QThread 重新实现 run() 函数是使用 QThread唯一推荐的使用方法.这是相当直观和易于使用的.但是在工作线程中使用槽机制和Qt事件循环时,一些用户使用错了.Qt ...

  9. Python并行编程(八):with语法

    1.基本概念 当有两个相关的操作需要在一部分代码块前后分别执行的时候,可以使用with语法自动完成.同时,使用with语法可以在特定的地方分配和释放资源,因此,with语法也叫作"上下文管理 ...

  10. 使用paramiko的SFTP get或put整个目录

    在<使用paramiko执行远程linux主机命令>中举例说明了执行远程linux主机命令的方法,其实paramiko还支持SFTP传输文件. 由于get或put方法每次只能传输一个文件, ...